LeetCode:15.三数之和&&18.四数之和

两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是不同于相加问题,我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。把符合条件的三元组放进vector中,然后再去重,这样是非常费时的。

我们可以采用排序+双指针来解决这类问题。在已排序数组中,通过两个指针分别从两端向中间移动,高效寻找满足条件的两个元素,配合外层循环固定其他元素,最终找到符合条件的组合。这里的指针移动是基于 “和的大小” 调整,和太大则右指针左移,和太小则左指针右移,匹配离散元素,处理非连续的元素组合

C++代码:

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end()); // 排序,为去重和双指针创造条件
        int n = nums.size();

        // 固定第一个元素 i,遍历所有可能的起点
        for (int i = 0; i < n; i++) {
            // 去重:若当前元素与前一个相同,跳过(避免重复解)
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }

            int left = i + 1;  // 左指针从 i+1 开始(避免重复使用同一元素)
            int right = n - 1; // 右指针从末尾开始

            // 双指针寻找另外两个元素
            while (left < right) {
                int sum = nums[i] + nums[left] + nums[right];

                if (sum > 0) {
                    // 和太大,右指针左移
                    right--;
                } else if (sum < 0) {
                    // 和太小,左指针右移
                    left++;
                } else {
                    // 找到一组解,添加元素值
                    result.push_back({nums[i], nums[left], nums[right]});

                    //去重:跳过左指针的重复元素
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    // 去重:跳过右指针的重复元素
                    while (left < right && nums[right] == nums[right - 1]) {
                        right--;
                    }

                    // 移动双指针,寻找下一组可能的解
                    left++;
                    right--;
                }
            }
        }
        return result;
    }
};

四数之和,和15.三数之和是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 的基础上再套一层for循环。

C++代码:

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        sort(nums.begin(), nums.end());
        vector<vector<int>> result;
        int n = nums.size();
        for (int i = 0; i < n - 1; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            for (int j = i + 1; j < n; j++) {
                if (j > i + 1 && nums[j] == nums[j - 1]) {
                    continue;
                }
                int left = j + 1;
                int right = n - 1;
                
                while (left < right) {
                    long long sum = (long long)nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum > target) {
                        right--;
                    } else if (sum < target) {
                        left++;
                    } else {
                        while (left < right && nums[left] == nums[left + 1]) {
                            left++;
                        }
                        while (left < right && nums[right] == nums[right - 1]) {
                            right--;
                        }
                        result.push_back(
                            {nums[i], nums[j], nums[left], nums[right]});
                        left++;
                        right--;
                    }
                }
            }
        }
        return result;
    }
};

像我们之前提到的:两数之和 就不能使用双指针法,因为两数之和要求返回的是索引下标, 而双指针法一定要排序,一旦排序之后原数组的索引就被改变了。如果两数之和要求返回的是数值的话,就可以使用双指针法了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值