自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

imewe的博客

AI及其应用,Python编程,IT及软件工具

  • 博客(87)
  • 资源 (7)
  • 收藏
  • 关注

原创 56、使用scikit-learn实现K-Means聚类【用Python进行AI数据分析进阶教程】

摘要:本文介绍了如何使用scikit-learn库实现K-Means聚类算法。文章首先概述了K-Means聚类的基本概念,随后详细讲解了其关键点,包括聚类数K的选择方法(如肘部法则、轮廓系数法)、初始质心选择(默认为k-means++算法)、距离度量方式(默认为欧几里得距离)以及收敛条件。同时,文章强调了数据预处理(标准化或归一化)、局部最优解的规避(多次运行算法)和异常值处理等注意事项。

2025-07-21 07:45:00 885

原创 55、机器学习之确定聚类数K的方法【用Python进行AI数据分析进阶教程】

摘要:本文介绍了在Python机器学习中确定K-Means聚类算法中合适聚类数K的三种常用方法。肘部法则通过计算不同K值下的簇内误差平方和来确定K值,寻找误差平方和下降幅度明显变缓的点。轮廓系数法衡量样本与所属簇的紧密程度及与其他簇的分离程度,选择轮廓系数最大的K值作为最佳聚类数。间隙统计量法通过比较实际数据的簇内分散程度与参考分布的期望簇内分散程度来确定K值,选择间隙统计量最大的K值。每种方法均包括原理、关键点、注意点及示例代码,并通过图形形式呈现结果,帮助直观确定最优聚类数K。

2025-07-20 08:00:00 828

原创 54、K-Means聚类的原理和算法步骤【用Python进行AI数据分析进阶教程】

摘要:K-Means聚类是一种无监督学习算法,旨在将数据集划分为K个不同的簇,通过迭代方式不断调整簇质心,使每个数据点到所属簇质心的距离之和最小。算法步骤包括随机选择初始簇质心、根据距离分配数据点到最近簇、重新计算并更新簇质心,重复这些步骤直至质心稳定或达到最大迭代次数。关键点在于K值的选择、初始质心的选取以及距离度量方法。数据预处理如标准化或归一化是必要步骤,以避免特征尺度差异影响聚类结果。

2025-07-19 08:00:00 2152

原创 53、机器学习之随机森林在回归和分类问题中的应用【用Python进行AI数据分析进阶教程】

摘要:随机森林是一种基于决策树的集成学习算法,广泛应用于Python机器学习的分类和回归问题中。在分类问题中,随机森林通过构建多个决策树并综合它们的预测结果来进行最终决策,采用投票法选择预测类别。其关键点包括随机采样和集成多个决策树,需注意参数调整和数据平衡。在回归问题中,随机森林预测连续数值,通过平均各决策树的预测结果得到最终值,常用均方误差等指标评估性能,需注意异常值处理和过拟合问题。文章通过示例代码展示了随机森林在鸢尾花数据集分类和生成回归数据集预测中的应用,包括数据划分、模型训练和性能评估等步骤。

2025-07-17 07:45:00 855

原创 52、机器学习之随机森林的参数调整和优化【用Python进行AI数据分析进阶教程】

摘要:随机森林是一种常用的机器学习算法,其参数调整和优化对提升模型性能至关重要。本文介绍了随机森林的五个主要参数:n_estimators(决策树数量)、max_features(每次分裂考虑的最大特征数)、max_depth(决策树的最大深度)、min_samples_split(拆分内部节点所需的最小样本数)和min_samples_leaf(叶子节点所需的最小样本数)。文章详细阐述了这些参数的关键点和注意点,指出通过交叉验证确定合适参数值的重要性,以避免过拟合或欠拟合。

2025-07-16 07:45:00 998

原创 51、机器学习随机森林的原理【用Python进行AI数据分析进阶教程】

摘要:随机森林是一种强大的机器学习算法,属于集成学习的范畴,具体使用了Bagging方法。集成学习通过组合多个弱学习器(如决策树)来构建强学习器,旨在降低方差、提高泛化能力。Bagging方法基于自助采样,通过多次有放回抽样形成多个训练数据集,每个数据集训练一个弱学习器,最后综合结果。随机森林在Bagging基础上引入特征随机选择,进一步增加决策树间的差异性,避免过拟合。

2025-07-15 07:45:00 794

原创 50、使用scikit-learn实现决策树模型【用Python进行AI数据分析进阶教程】

摘要:本文介绍了如何使用 Python 的 scikit-learn 库实现决策树模型,涵盖分类和回归两种主要场景。在分类部分,重点讲解了数据准备、模型创建、训练、预测与评估,并指出过拟合、数据质量和特征选择等注意事项,提供了基于鸢尾花数据集的示例代码。对于回归模型,同样阐述了建模流程,并以模拟数据演示了 DecisionTreeRegressor 的应用。文章强调了剪枝、数据预处理的重要性,并展示了关键指标(如准确率和均方误差)在模型评估中的作用。整体内容系统清晰,适合初学者掌握决策树的实战技巧。

2025-07-14 07:45:00 983

原创 49、决策树的剪枝【用Python进行AI数据分析进阶教程】

摘要:本文介绍了决策树剪枝的基本概念及其重要性,重点讲解了防止决策树过拟合的两种主要方法:预剪枝和后剪枝。预剪枝在树的构建过程中提前停止划分,通过设置最大深度、最小样本数等参数控制树的复杂度,但存在欠拟合风险;后剪枝则是在树完全生成后进行自底向上的剪枝操作,常用方法为代价复杂度剪枝(CCP),利用验证集评估剪枝效果,虽计算成本较高但泛化能力更强。文中还提供了基于Scikit-Learn库实现预剪枝与后剪枝的具体Python代码示例

2025-07-13 07:45:00 1072

原创 48、机器学习之决策树的构建过程【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了决策树构建过程中基于信息增益和基尼系数的特征选择方法。信息增益通过计算划分前后数据集的熵变化衡量特征重要性,而基尼系数则通过衡量数据集纯度选择最优划分特征。两者均旨在降低划分后的数据集不确定性或不纯度。文中提供了使用Python实现两种方法的具体代码示例,并指出信息增益倾向于取值较多的特征,而基尼系数在计算上更为高效。最终通过运行示例数据展示了两个指标的实际应用效果,强调了特征选择在决策树构建中的关键作用。

2025-07-12 08:30:00 703

原创 47、逻辑回归的分类模型的评估指标【用Python进行AI数据分析进阶教程】

摘要:本文介绍了逻辑回归分类模型的常用评估指标,包括准确率、召回率、F1 值和混淆矩阵。准确率衡量模型整体预测正确性,但在类别不平衡时可能不具代表性;召回率关注模型识别正例的能力,在医疗诊断等场景中尤为重要;F1 值综合考虑了准确率与召回率,适用于需要两者平衡的任务;混淆矩阵则直观展示分类结果,便于分析模型在各类别上的表现。文章通过 Python 示例代码演示了如何在 sklearn 中使用相关评估函数,并结合鸢尾花数据集进行实验。

2025-07-11 07:45:00 1217

原创 46、逻辑回归的二分类和多分类问题的处理【用Python进行AI数据分析进阶教程】

摘要:本文介绍了逻辑回归在二分类和多分类问题中的应用。逻辑回归通过Sigmoid函数将线性回归输出映射为概率值,适用于二分类任务;而在多分类场景下,可采用One-vs-Rest(OvR)或Softmax回归策略进行扩展。文中分别给出了二分类与多分类的实现示例,使用Scikit-Learn库完成模型训练、预测及评估。重点解析了数据预处理、模型参数设置、决策边界、损失函数以及准确率评估等关键环节,并强调了正则化、类别不平衡等实际问题的应对方法。通过实验展示了逻辑回归在简单数据集上的良好分类效果。

2025-07-10 07:45:00 1178

原创 45、Python机器学习的逻辑回归的原理【用Python进行AI数据分析进阶教程】

摘要:本文介绍了逻辑回归这一常用于二分类问题的机器学习算法,尽管其名称中包含“回归”,但实际主要用于分类任务。核心思想是通过将线性回归模型的输出输入到sigmoid函数中,从而映射为一个0到1之间的概率值,用以判断样本属于正类或负类的可能性。文中详细阐述了逻辑回归的分类原理、sigmoid函数的作用及特性,并指出了逻辑回归对特征与类别之间线性关系的假设限制和阈值选择的灵活性。同时,通过多个示例代码展示了逻辑回归在学生考试预测和肿瘤良恶性判断等场景中的应用,包括数据准备、模型训练、预测和评估过程

2025-07-09 11:54:25 1050

原创 44、Python机器学习的模型评估指标【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Python机器学习中常用的模型评估指标,包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)。这些指标用于衡量模型的预测性能和拟合程度。MSE反映预测值与真实值之间的平均误差大小,但对异常值敏感;RMSE是MSE的平方根,单位与原始数据一致,更直观;MAE衡量预测值与真实值的平均绝对偏差,对异常值相对不敏感;R²衡量模型对数据的拟合优度,越接近1表示模型拟合效果越好。

2025-07-08 07:45:00 1042

原创 43、使用scikit-learn实现简单线性回归和多元线性回归【用Python进行AI数据分析进阶教程】

摘要:本文介绍了如何使用scikit-learn库在Python中实现简单线性回归和多元线性回归。简单线性回归用于建立单一自变量与因变量之间的线性关系,而多元线性回归则扩展到多个自变量。文章提供了两种模型的实现步骤、关键点和注意事项,包括数据格式要求、特征缩放、多重共线性问题以及特征选择的重要性。同时,通过示例代码演示了数据准备、模型创建、训练和预测的过程,并可视化了简单线性回归的结果。读者可以借此快速掌握利用scikit-learn进行线性回归建模的基本方法。

2025-07-07 07:45:00 1192

原创 42、Python机器学习的线性回归的原理和假设【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了线性回归的基本原理、数学表达式、核心假设及实现方法。线性回归通过寻找最佳拟合直线或超平面来建立自变量与因变量之间的线性关系,通常使用最小二乘法求解最优系数。文章列出了线性回归的四大假设:线性关系、独立性、同方差性和误差项服从正态分布。此外,还讨论了特征选择、正则化(如岭回归和Lasso回归)以防止过拟合,以及异常值、多重共线性对模型的影响。示例代码展示了如何使用scikit-learn进行数据生成、模型训练、预测与可视化,并通过均方误差(MSE)和决定系数R²评估模型性能,帮助读者全面理

2025-07-06 08:30:00 1086

原创 41、Python机器学习的数据集的划分【用Python进行AI数据分析进阶教程】

摘要:本文介绍了在Python机器学习中划分数据集的关键方法和注意事项。数据集通常被划分为训练集、验证集和测试集,分别用于模型训练、超参数调优和最终性能评估。为确保模型泛化能力,需保证各数据集间的数据分布一致且相互独立。随机划分和设置随机种子(random_state)有助于提升划分的可重复性和数据代表性。当数据量较小时,推荐使用交叉验证以提升模型训练效果。示例代码展示了如何使用scikit-learn库中的train_test_split函数进行分层抽样,并按60%、20%、20%的比例划分三个数据集。

2025-07-05 08:30:00 907

原创 40、Python机器学习的流程【用Python进行AI数据分析进阶教程】

摘要:Python机器学习流程包含数据预处理、模型选择、训练、评估和预测等关键步骤。数据预处理涉及清洗、转换和特征提取,以提高模型性能。模型选择需根据问题类型和数据特点,选择合适的机器学习模型。模型训练使用预处理后的数据对模型进行训练,需注意数据集划分、损失函数和优化算法。模型评估通过评估指标衡量模型性能,常用准确率、混淆矩阵等,需考虑评估指标的局限性和数据分布。最后,模型预测使用训练好的模型对新数据进行预测,需确保数据预处理方式与训练数据一致。

2025-07-04 07:45:00 958

原创 39、Python机器学习的基本概念【用Python进行AI数据分析进阶教程】

摘要:本文概述了Python在机器学习中的应用,重点介绍了监督学习、无监督学习、半监督学习和强化学习的基本概念。监督学习利用有标记数据进行模型训练,适用于预测和分类任务。无监督学习发现数据内在结构,如聚类、降维,无需预定义标签。半监督学习结合少量标记数据和大量未标记数据,提高模型性能。强化学习通过智能体与环境的交互学习最优行为策略。文章还提及了各学习类型的关键点、注意点及实际应用举例,展示了Python在机器学习领域的广泛应用和灵活性。

2025-07-03 07:45:00 1570

原创 38、Seabor的联合图和成对图的绘制【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Seaborn库中的联合图(Joint Plot)和成对图(Pair Plot)的绘制方法。联合图用于展示两个变量之间的关系及各自分布,支持散点图、直方图、核密度估计图等多种类型,适用于连续型变量分析,可自定义图形外观。成对图则用于展示数据集中多个变量之间的两两关系,通过不同子图展示变量对关系及单变量分布,适用于快速发现变量相关性和分布特征,可通过分类变量进行分组展示。使用时需注意数据量、异常值处理及图形复杂度,以确保分析结果准确性和可读性。联合图和成对图是数据分析中重要的可视化工具。

2025-07-02 07:45:00 990

原创 37、使用Seaborn样式和调色板【用Python进行AI数据分析进阶教程】

摘要:Seaborn提供了丰富的样式和调色板选项,帮助创建美观专业的数据可视化图表。在样式方面,Seaborn有5种预设样式(darkgrid、whitegrid、dark、white、ticks),可通过sns.set_style()全局设置或sns.axes_style()临时设置。选择样式时需考虑数据特点和可视化目的,避免样式冲突。在调色板方面,Seaborn提供定性(区分类别)、顺序(表示数值大小)、发散(表示偏离中心值)等多种类型调色板

2025-07-01 13:02:39 994

原创 36、Seaborn绘制统计图表【用Python进行AI数据分析进阶教程】

摘要:Seaborn是基于Matplotlib的Python数据可视化库,便于绘制美观且具有统计意义的图表。本文介绍了Seaborn中几种常见统计图表的绘制方法,包括箱线图、直方图、热图和小提琴图。箱线图适用于展示数值型数据的分布情况,如中位数、四分位数等,可分组比较数据差异。直方图通过划分区间展示单变量数值型数据的频数分布,区间数量和范围的选择会影响直方图形状。热图用于展示二维矩阵数据,通过颜色深浅表示数据值大小。小提琴图结合了箱线图和核密度估计图的特点,展示数值型数据在不同类别下的分布情况。

2025-06-30 07:30:00 974

原创 35、Seaborn基础概述【用Python进行AI数据分析进阶教程】

摘要:本文介绍了 Seaborn 这一基于 Matplotlib 的 Python 数据可视化库,强调其高级接口和美观的默认样式,适用于统计数据的可视化分析。文章概述了 Seaborn 的主要特点,包括与 Pandas 集成良好、专注统计功能、提供丰富的图表类型等,并详细说明了散点图、折线图、柱状图、箱线图和热力图的绘制方法。此外,还介绍了 Seaborn 的样式管理功能,如设置绘图风格和颜色调色板,以及其与 Matplotlib 的关系,展示了如何结合两者进行图形定制。通过示例代码和解释,帮助读者快速掌握

2025-06-29 07:45:00 856

原创 34、Matplotlib子图的创建与布局【用Python进行AI数据分析进阶教程】

摘要:Matplotlib是Python中广泛使用的绘图库,其强大的子图功能可在同一图形窗口中展示多个图形。本文介绍了三种创建与布局子图的方法:使用plt.subplot()通过指定网格行列数和索引创建子图,适用于简单直接的布局;使用plt.subplots()可一次性创建多个子图,并返回包含所有子图对象的数组,便于统一管理;使用GridSpec进行灵活布局,可指定子图跨越的行和列,实现复杂布局。文章还总结了关键点,如plt.subplot()索引从1开始,plt.subplots()和GridSpec索引

2025-06-28 07:45:00 1010

原创 33、Matplotlib图表的定制【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了 Matplotlib 图表的定制方法,涵盖标题、坐标轴标签、图例、颜色和字体等核心内容。文章通过多个示例演示了如何使用 plt.title()、plt.xlabel()、plt.ylabel()、plt.legend() 等函数进行图表元素的个性化设置,包括位置调整、字体样式修改、标签旋转、坐标轴范围设定等。同时强调了在多数据系列情况下图例的重要性,以及如何通过颜色名称、十六进制码或 RGB 值来区分不同数据系列。

2025-06-27 07:45:00 745

原创 32、Matplotlib绘制基本图表【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了使用 Python 的 Matplotlib 库绘制基本图表的方法,包括折线图、柱状图、散点图和饼图。每种图表类型均明确了关键点、注意点,并配有示例代码及输出解释。折线图通过 plt.plot() 函数实现,适用于展示自变量与因变量之间的变化趋势;柱状图使用 plt.bar() 或 plt.barh() 绘制,用于比较不同类别的数值大小;散点图通过 plt.scatter() 展示两个变量之间的关系;饼图则借助 plt.pie() 表达各部分在整体中的比例。文章还强调了图表绘制中常见参数

2025-06-26 07:45:00 1184

原创 31、Matplotlib库基础概述【用Python进行AI数据分析进阶教程】

摘要:本文简要介绍了 Python 中常用的绘图库 Matplotlib 的基础知识。主要内容包括绘制基本图表类型,如折线图、柱状图、散点图和饼图,分别适用于展示趋势、比较数据、分析相关性以及显示比例关系。此外,文章详细说明了如何对图表进行定制,包括添加标题、坐标轴标签、图例、设置颜色和字体等。最后,还介绍了如何使用 Matplotlib 创建包含多个图表的布局,即子图,并通过调整参数优化整体排版。这些内容为初学者提供了良好的入门指导,有助于快速掌握数据可视化的基本方法。

2025-06-25 07:45:00 1016

原创 30、Python数据可视化基础概述【用Python进行AI数据分析进阶教程】

摘要:本文概述了Python数据可视化的基础,强调其在快速理解数据、发现数据模式和趋势以及有效传递信息方面的重要性。文章介绍了三种常用的Python库:Matplotlib用于创建静态图表,具有高度的自定义能力;Seaborn基于Matplotlib构建,提供更高级的统计图表和美观样式;Plotly支持交互式图表,适用于Web应用和仪表盘开发。此外,还列举了几种基本图表类型及其应用场景,包括折线图、柱状图、散点图、饼图和箱线图,帮助读者选择合适的图表形式来表达数据背后的信息。

2025-06-24 07:45:00 935

原创 29、pandas库数据透视表【用Python进行AI数据分析进阶教程】

摘要:本文介绍了 Pandas 库中用于数据分析的重要工具——数据透视表(Pivot Table),重点讲解了 pivot_table() 函数的使用方法及其关键参数。数据透视表可以对数据进行分组、聚合和重塑,帮助用户从不同维度分析数据。文中详细说明了 values、index、columns 和 aggfunc 等核心参数的作用,并强调了合理选择行索引、列索引及聚合函数的重要性。同时,还提到了处理缺失值、数据类型和重复索引等常见问题的注意事项。

2025-06-23 07:45:00 1152

原创 28、用pandas库进行数据的合并与连接【用Python进行AI数据分析进阶教程】

摘要:本文主要介绍了 Pandas 库中用于数据合并与连接的四种常用方法:concat()、merge()、join() 和 append()。分别说明了它们的功能、关键参数、注意事项及使用示例。

2025-06-22 07:45:00 854

原创 27、用pandas库进行数据筛选、排序和分组【用Python进行AI数据分析进阶教程】

摘要:本文介绍了如何使用 Python 中的 pandas 库进行数据筛选、排序和分组操作。首先通过创建一个学生信息的数据集作为示例,随后详细讲解了按条件和索引进行数据筛选的方法,强调使用布尔索引和逻辑运算符组合多个条件。接着介绍了按列值对数据进行排序,包括单列排序和多列排序的不同场景及实现方式。最后,文章重点说明了如何通过 groupby 方法进行数据分组,并结合 agg 和 size 方法实现对分组后数据的聚合与统计

2025-06-21 07:45:00 649

原创 26、用pandas库进行数据清洗【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了如何使用 Python 的 pandas 库进行数据清洗操作,主要包括处理缺失值、重复值、异常值以及数据类型转换。通过具体示例展示了如何检测并填充缺失值、删除重复数据、识别和剔除异常值,并进行了数据类型的转换。文章强调了在数据分析前进行数据清洗的重要性,以确保数据的完整性和准确性,提高后续分析结果的可靠性。同时提醒在操作前应备份原始数据,注意保持数据的一致性与完整性。

2025-06-20 07:45:00 1089

原创 25、用pandas库进行数据的读取和写入【用Python进行AI数据分析进阶教程】

摘要:本文详细介绍了使用Python的pandas库进行数据读取和写入的方法。在数据读取方面,涵盖了从CSV文件、Excel文件及SQL数据库中读取数据的方式,包括指定文件路径、工作表名称、数据库连接信息等关键点。在数据写入方面,讲解了如何将数据写入CSV文件、Excel文件及SQL数据库,并强调了文件路径、工作表名称、表名唯一性及数据库连接信息的正确性。同时,文章提供了示例代码及重点语句解释,帮助读者快速掌握pandas库的数据处理技巧。

2025-06-19 07:45:00 1157

原创 24、pandas库Series和DataFrame的创建与基本操作【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Python中pandas库的两个核心数据结构——Series和DataFrame的创建与基本操作。Series是一种一维数组对象,包含数据及索引,可通过列表、字典等多种方式创建,支持整数索引和标签索引访问数据。DataFrame则是表格型数据结构,含有多列有序数据,每列可包含不同值类型,通过字典、二维数组等创建,具备行索引和列索引,支持数据对齐。文章通过实例展示了Series和DataFrame的创建过程,以及如何通过索引和列名选取数据,为数据处理和分析提供了基础。

2025-06-18 07:45:00 1029

原创 23、pandas库基础概述【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Python中用于数据处理和分析的开源库——Pandas。文章首先阐述了Pandas的定义及其背景,指出其建立在NumPy之上,提供高效的数据结构和操作工具。接着重点讲解了Pandas的两个核心数据结构:一维带标签数组Series和二维表格型数据结构DataFrame,并通过代码示例展示了它们的创建方法和特点。随后,文章详细介绍了Pandas在数据读取与写入方面的功能,支持从CSV、Excel等文件格式读取数据,并将处理后的数据写回多种文件格式。

2025-06-17 07:45:00 1089

原创 22、NumPy数组的变形与重塑【用Python进行AI数据分析进阶教程】

摘要:本文介绍了NumPy数组的变形与重塑操作,这是数据处理和算法实现中的重要环节。变形指改变数组形状而保留数据,使用reshape()方法实现,需确保元素总数不变。重塑则是将多维数组转为一维,可通过flatten()方法和ravel()函数实现,两者区别在于返回的是副本还是视图。flatten()返回副本,修改不影响原数组;ravel()返回视图,修改会反映到原数组。文章还强调了形状计算、视图与副本的选择及数据连续性等注意点,并通过示例代码详细展示了各方法的使用。

2025-06-16 07:30:00 784

原创 21、常用的NumPy函数【用Python进行AI数据分析进阶教程】

摘要:本文介绍了NumPy库中常用的几个函数,包括np.arange()用于创建等差数组,np.linspace()用于生成均匀分布的数组,np.zeros()和np.ones()分别用于创建全零和全一数组,np.sum()用于计算数组元素总和,np.mean()用于计算平均值,以及np.max()和np.min()用于查找数组中的最大值和最小值。这些函数在数值计算和数据处理中非常实用,能够显著提高数据处理效率。通过掌握这些函数,用户可以更高效地进行科学计算和数据分析。

2025-06-15 07:30:00 1246

原创 20、NumPy数组的运算【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Python中NumPy库的数组运算功能,包括算术运算(加、减、乘、除等)、逻辑运算(与、或、非)和比较运算(等于、不等于、大于等)。强调了NumPy运算的元素级特性及广播机制,使得不同形状数组间的运算成为可能。文章通过实例展示了如何使用NumPy进行数组间的运算,包括数组与数组、数组与标量之间的运算,以及逻辑运算和比较运算的具体应用。

2025-06-14 17:05:05 1066

原创 19、NumPy数组的索引和切片操作【用Python进行AI数据分析进阶教程】

摘要:本文介绍了Python中NumPy库的数组索引和切片操作。索引用于访问单个元素,从0开始计数;切片用于提取子数组,可指定起始索引、结束索引和步长。一维数组通过单个整数索引访问,多维数组需多个索引值。支持负数索引,切片结果为视图,非副本,修改视图会影响原数组。需注意索引越界、步长为负数时的方向反转及视图与副本的区别。通过实例展示了索引和切片在一维及多维数组中的应用。

2025-06-13 09:23:02 1100

原创 AIV04、用AI生成图片(2)

摘要:本文介绍使用即梦AI在安卓手机上生成抖音视频图片的两种方法。方法一是通过输入提示词生成图片,包括设置图片比例、输入描述性提示词、调整修改并保存;方法二是以现有图片为参考结合提示词生成新图片。两种方法均可生成带水印的图片,适用于短视频创作。操作步骤配有详细说明和界面截图,帮助用户快速掌握AI图片生成技巧。

2025-06-12 07:45:00 635

原创 009、老年人:语音交互生成广场舞歌词、养生食谱【AI大模型应用实践进阶教程】

摘要:本文为老年人提供了语音交互生成广场舞歌词和养生食谱的实战指南。通过小爱同学、天猫精灵等设备,老年人可轻松创作广场舞歌词,支持增删段落、替换词汇等优化调整。同时,利用华为小艺、小度等工具,老年人能获取个性化养生食谱,满足特定饮食需求,如适合糖尿病人的一周早餐食谱。文章还提供了清晰表达技巧、安全设置建议及设备推荐,如小度在家X8的屏幕字大、方言识别功能,帮助老年人更好地使用语音交互技术,丰富退休生活。

2025-06-12 07:30:00 1683

比亚迪 宋PLUS-EV用户手册.pdf

《比亚迪 宋PLUS-EV用户手册》涵盖了车辆使用、驾驶、保养及故障处理等内容。驾驶辅助功能 包括自适应巡航(ACC),可在30-150 km/h设定车速,自动跟车及保持车距;智能领航、预测性紧急制动、车道偏离预警和盲区监测等功能提升安全性。充电与电池管理 部分强调安全充电环境,定期满充以维持电池健康,并提醒避免极端温度对电池的影响。保养方面 提供详细的定期维护计划,包括检查底盘螺丝、制动系统、轮胎气压等项目,建议每6个月或7200 km进行满充满放校准电池。自行保养 指导用户清洗车辆、保养空调和雨刮器,以及轮胎更换注意事项。此外,还包含紧急情况应对措施,如车辆涉水、火灾预防及拖曳处理等。

2025-05-31

奥维互动地图Windows客户端 _v7.4.0-VIP1版.rar

奥维互动地图:跨平台地图浏览器,支持iOS(iPhone、iPad)、Android、Windows、WindowsPhone、Web五大平台。 集多种知名地图与一体,拥有强大的设计功能与地理信息展现技术,可满足各行各业地理信息规划的需求。它不仅是您工作上的好帮手,也是您探索未知世界的更好伴侣。 这里提供的是Windows运行环境下的版本,VIP1支持5000个奥维对象以及相关特权(普通版只支持1000个奥维对象)

2019-12-05

MediaBox(截获视频流)

MediaBox 截获视频流 开始: 1、解压以上工具,接着打开名字为“MediaBox”的软件,这是一个截获视频流的软件,打开之后,自动收缩在任务栏后台运行。 2、里面还有有一个叫“极品影音盒子”的直播软件,电脑有了它就可以直接看电视了,使用很简单很方便,这里不用多说了! 我们打开该软件,选择我们要看的直播节目,很快刚才打开的“MediaBox”便提示截获到视频流。 3、任务栏右击,打开“MediaBox”主界面,首先我们看到里面左边有个图标,图标上有视频的格式没这个很重要。 4、右击截获的视频流,复制地址,有些复制完的地址直接就能用,有些是不行的,如果不行,开头则改为HTTP, 后面加上“ . ” 再加刚才那个视频格式,当然有些后面已经有视频格式的就可以不加。这样就得到一个完整的电视直播源。

2014-06-20

网贷记账APP(安卓版)

精选的网贷理财记账APP(安卓版)—— 1、玉米投手_v1.3.1.apk 2、网贷账本_v1.1.0_3.apk

2015-05-20

WinRAR5.3除弹窗广告简体中文注册版

在官网下载的WinRAR5.3简体中文个人免费版,在使用的时候会弹出广告窗——很是烦人。 现在好了,下载这里的32位版、64位版安装后,再将这里下载的“rarreg(winrar5.3注册、除弹窗广告)”,将其中的“rarreg.key”文件释放到WinRAR的安装目录下,以后再不会有弹窗广告干扰烦人了。

2016-01-27

Veket linux_v8.06-x86.part1.rar

veket一款专业好用的Linux操作系统,仅有330Mb大小,甚至可以转入1G的U盘。关键是能适合仅能装Windows98、WindowsXP的老电脑。这里提供veket操作系统的ISO文件(Veket linux_v8.06-x86.part1.rar,Veket linux_v8.06-x86.part2.rar)、veket安装工具(Veket-Inst.rar)。用“Veket系统安装工具”即可将veket镜像文件装入硬盘和U盘(使U盘具有引导启动功能)。

2019-12-05

Veket linux_v8.06-x86.part2.rar

veket一款专业好用的Linux操作系统,仅有330Mb大小,甚至可以转入1G的U盘。关键是能适合仅能装Windows98、WindowsXP的老电脑。这里提供veket操作系统的ISO文件(Veket linux_v8.06-x86.part1.rar,Veket linux_v8.06-x86.part2.rar)、veket安装工具(Veket-Inst.rar)。用“Veket系统安装工具”即可将veket镜像文件装入硬盘和U盘(使U盘具有引导启动功能)。

2019-12-05

Veket-Inst.rar

veket一款专业好用的Linux操作系统,仅有330Mb大小,甚至可以转入1G的U盘。关键是能适合仅能装Windows98、WindowsXP的老电脑。这里提供veket操作系统的ISO文件(Veket linux_v8.06-x86.part1.rar,Veket linux_v8.06-x86.part2.rar)、veket安装工具(Veket-Inst.rar)。用“Veket系统安装工具”即可将veket镜像文件装入硬盘和U盘(使U盘具有引导启动功能)。

2019-12-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除