57、机器学习主成分分析(PCA)的原理【用Python进行AI数据分析进阶教程】

用Python进行AI数据分析进阶教程57:

机器学习主成分分析(PCA)的原理


关键词:主成分分析、无监督学习、特征降维、方差最大化、特征值分解

摘要:本文介绍了主成分分析(PCA)的基本原理和实现步骤。PCA是一种无监督的线性降维技术,旨在通过找到一组新的正交特征(主成分),在保留原始数据尽可能多信息的前提下,减少数据的冗余特征。其核心思想是利用方差最大化来确定主成分方向,并通过特征值分解协方差矩阵获得这些主成分。文中详细描述了数据标准化、协方差矩阵计算、特征值排序以及数据投影等关键步骤。同时,结合Python示例代码演示了如何使用scikit-learn库实现PCA,并对鸢尾花数据集进行了降维与可视化。此外,还强调了选择合适维度k的重要性,可通过累计方差贡献率进行判断。PCA广泛应用于数据压缩、特征提取和可视化等领域。

👉 欢迎订阅🔗
《用Python进行AI数据分析进阶教程》专栏
《AI大模型应用实践进阶教程》专栏
《Python编程知识集锦》专栏
《字节跳动旗下AI制作抖音视频》专栏
《智能辅助驾驶》专栏
《工具软件及IT技术集锦》专栏


. 基本思想

PCA 是一种无监督的线性降维技术。在高维数据中,特征之间可能存在相关性,导致数据存在冗余信息。PCA 的目标是找到一组新的正交特征(主成分),这些主成分能够尽可能多地保留原始数据的方差,也就是信息。通过将数据投影到这些主成分上,可以实现数据的降维。

. 数学原理

设原始数据矩阵为 X,其维度为 n×p,其中 n 是样本数量,p 是特征数量。PCA 的主要步骤如下:

  • 数据中心化:计算每个特征的均值,然后将每个样本的对应特征值减去该特征的均值,使得数据的均值为 0。即,其中 Xˉ 是每列的均值向量。
  • 计算协方差矩阵协方差矩阵 C 描述了特征之间的相关性,计算公式为 
  • 特征值分解对协方差矩阵 C 进行特征值分解,得到特征值 λi 和对应的特征向量 vi​,满足 。特征值表示主成分的方差大小,特征向量表示主成分的方向。
  • 选择主成分将特征值从大到小排序,选择前 k 个最大特征值对应的特征向量作为主成分,k 是降维后的维度。
  • 数据投影将中心化后的数据 Xcentered​ 投影到选择的主成分上,得到降维后的数据 ​,其中 Vk 是由前 k 个特征向量组成的矩阵。

三、关键点

  • 方差最大化PCA 选择的主成分是能够使数据投影后方差最大的方向,这样可以保留数据的主要信息。
  • 正交性主成分之间是正交的,即它们之间的相关性为 0,避免了信息的冗余。
  • 降维通过选择前 k 个主成分,可以将数据从 p 维降维到 k 维,减少计算复杂度和存储需求。

四、注意点

  • 数据标准化在进行 PCA 之前,通常需要对数据进行标准化处理,以确保所有特征具有相同的尺度。否则,尺度较大的特征可能会主导协方差矩阵的计算。
  • 主成分解释主成分是原始特征的线性组合,可能难以直接解释其物理意义。在实际应用中,需要结合具体问题进行分析。
  • 维度选择选择合适的降维维度 k 是一个关键问题。可以通过查看特征值的累计贡献率来确定 k 的值,一般选择累计贡献率达到 80% - 95% 的主成分。

五、示例及代码

下面是一个使用 Python 和 scikit-learn 库实现 PCA 的示例代码:

Python脚本

# 导入 numpy 库,用于数值计算,通常使用别名 np 方便调用
import numpy as np
# 从 sklearn 库的 datasets 模块中导入 load_iris 函数,用于加载鸢尾花数据集
from sklearn.datasets import load_iris
# 从 sklearn 库的 preprocessing 模块中导入 StandardScaler 类,用于数据标准化处理
from sklearn.preprocessing import StandardScaler
# 从 sklearn 库的 decomposition 模块中导入 PCA 类,用于执行主成分分析(PCA)
from sklearn.decomposition import PCA
# 导入 matplotlib 库的 pyplot 模块,用于数据可视化,通常使用别名 plt 方便调用
import matplotlib.pyplot as plt

# 设置支持中文的字体
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]

def perform_pca():
    """
    此函数用于加载鸢尾花数据集,进行标准化处理,执行 PCA 降维,并可视化结果。
    """
    try:
        # 调用 load_iris 函数加载鸢尾花数据集,将其存储在变量 iris 中
        iris = load_iris()
        # 从 iris 数据集中提取特征数据,存储在变量 X 中
        X = iris.data
        # 从 iris 数据集中提取目标标签,存储在变量 y 中
        y = iris.target

        # 创建 StandardScaler 类的实例,用于数据标准化
        scaler = StandardScaler()
        # 调用 fit_transform 方法对特征数据 X 进行标准化处理,
        # 并将结果存储在变量 X_scaled 中
        X_scaled = scaler.fit_transform(X)

        # 创建 PCA 类的实例,指定降维后的维度为 2,即保留前两个主成分
        pca = PCA(n_components=2)

        # 调用 fit_transform 方法对标准化后的数据 X_scaled 执行 PCA 降维,
        # 并将结果存储在变量 X_pca 中
        X_pca = pca.fit_transform(X_scaled)

        # 获取 PCA 降维后主成分的方差解释比例,存储在变量 explained_variance_ratio 中
        explained_variance_ratio = pca.explained_variance_ratio_
        # 打印主成分的方差解释比例,该比例反映了每个主成分所包含的原始数据信息的比例
        print("主成分的方差解释比例:", explained_variance_ratio)
        # 输出示例:主成分的方差解释比例: [0.92461872 0.05306648]
        # 这表示第一个主成分解释了约 92.46% 的数据方差,
        # 第二个主成分解释了约 5.31% 的数据方差

        # 计算主成分的累计方差解释比例,即前 k 个主成分解释的总方差比例
        cumulative_explained_variance = np.cumsum(explained_variance_ratio)
        # 打印累计方差解释比例,帮助判断保留的主成分是否足够解释原始数据
        print("累计方差解释比例:", cumulative_explained_variance)
        # 输出示例:累计方差解释比例: [0.92461872 0.9776852 ]
        # 这表示前两个主成分总共解释了约 97.77% 的数据方差

        # 创建一个新的图形窗口,设置窗口大小为 8x6 英寸
        plt.figure(figsize=(8, 6))
        # 绘制散点图,将降维后的数据 X_pca 的第一列作为 x 轴,第二列作为 y 轴,
        # 根据目标标签 y 对散点进行颜色编码,使用 'viridis' 颜色映射
        plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis')
        # 设置 x 轴的标签为 '第一主成分'
        plt.xlabel('第一主成分')
        # 设置 y 轴的标签为 '第二主成分'
        plt.ylabel('第二主成分')
        # 设置图形的标题为 'PCA 降维后的鸢尾花数据集'
        plt.title('PCA 降维后的鸢尾花数据集')
        # 在图形中添加网格线,方便观察数据点的位置
        plt.grid(True)
        # 调整图形的布局,确保所有元素都能完整显示
        plt.tight_layout()
        # 显示绘制好的图形
        plt.show()

    except Exception as e:
        # 如果在执行过程中发生异常,捕获该异常并打印错误信息
        print(f"发生错误: {e}")


# 主程序入口,当脚本作为主程序运行时,调用 perform_pca 函数
if __name__ == "__main__":
    perform_pca()

输出 / 打印结果说明

  • 主成分的方差解释比例打印出每个主成分所解释的方差占总方差的比例。例如 [0.92461872 0.05306648],这意味着第一个主成分解释了约 92.46% 的数据方差,第二个主成分解释了约 5.31% 的数据方差。
  • 累计方差解释比例打印出前 k 个主成分解释的总方差比例。例如 [0.92461872 0.9776852 ],表示前两个主成分总共解释了约 97.77% 的数据方差,这说明通过这两个主成分可以保留原始数据的大部分信息。
  • 可视化结果会弹出一个图形窗口,显示 PCA 降维后的鸢尾花数据集的散点图,不同颜色的点代表不同类别的鸢尾花,方便观察数据在降维后的分布情况。

重点语句解读

1、数据标准化

Python脚本

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
  • StandardScaler 是 scikit-learn 中的一个类,用于对数据进行标准化处理。fit_transform 方法首先计算每个特征的均值和标准差,然后将数据进行标准化,使得每个特征的均值为 0,标准差为 1。

2、创建 PCA 对象

Python脚本

pca = PCA(n_components=2)
  • PCA 是 scikit-learn 中的一个类,用于实现主成分分析。n_components 参数指定降维后的维度,这里设置为 2,表示将数据降维到 2 维。

3、执行 PCA 降维

Python脚本

X_pca = pca.fit_transform(X_scaled)
  • fit_transform 方法首先对标准化后的数据进行协方差矩阵的计算和特征值分解,然后将数据投影到前 2 个主成分上,得到降维后的数据。

4、打印主成分的方差解释比例

Python脚本

print("主成分的方差解释比例:", pca.explained_variance_ratio_)
  • explained_variance_ratio_ 属性返回每个主成分的方差解释比例,即每个主成分所包含的信息占总信息的比例。通过查看这个比例,可以了解每个主成分的重要性。

5、可视化降维后的数据

Python脚本

plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis')
plt.xlabel('第一主成分')
plt.ylabel('第二主成分')
plt.title('PCA 降维后的鸢尾花数据集')
plt.show()

这段代码使用 matplotlib 库将降维后的数据可视化。scatter 函数绘制散点图,c=y 表示根据样本的类别标签进行颜色编码,cmap='viridis' 是颜色映射。通过可视化可以直观地观察到数据在降维后的分布情况。

——The END——


🔗 欢迎订阅专栏

序号专栏名称说明
1用Python进行AI数据分析进阶教程《用Python进行AI数据分析进阶教程》专栏
2AI大模型应用实践进阶教程《AI大模型应用实践进阶教程》专栏
3Python编程知识集锦《Python编程知识集锦》专栏
4字节跳动旗下AI制作抖音视频《字节跳动旗下AI制作抖音视频》专栏
5智能辅助驾驶《智能辅助驾驶》专栏
6工具软件及IT技术集锦《工具软件及IT技术集锦》专栏

👉 关注我 @理工男大辉郎 获取实时更新

欢迎关注、收藏或转发。
敬请关注 我的
微信搜索公众号:cnFuJH
CSDN博客:理工男大辉郎
抖音号:31580422589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理工男大辉郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值