探索“意图”逻辑:从个体到群体的深入剖析
1. 逻辑基础与有效语句
在逻辑体系中,我们先明确一些基础概念。设 (S) 是一组状态或世界,(V : Φ_0 \to 2^S) 是赋值函数,它指定了原始命题成立的世界。(E : 2^N \to 2^{2^S}) 满足特定条件:
- (E({}) = {S})
- 若 (C \subset C’),则 (E(C’)) 是 (E(C)) 的细化
满足关系定义如下:
- ((S, E, V) \not\models \bot)
- 对于 (p \in Φ_0),((S, E, V) \models p) 当且仅当 (s \in V(p))
- ((S, E, V) \models \neg\phi) 当且仅当 ((S, E, V) \not\models \phi)
- ((S, E, V) \models \phi_1 \vee \phi_2) 当且仅当 ((S, E, V) \models \phi_1) 或 ((S, E, V) \models \phi_2)
- ((S, E, V) \models [C]\phi) 当且仅当存在 (S’ \in E(C)),使得对于所有 (s \in S’),都有 (s \models \phi)
在这个逻辑中,有一些语句是有效的,例如:
- (\neg[C]\bot) 和 ([C]\top) 是有效的,因为没有联盟可以强制产生矛盾,而重言式在任何模型中都为真。
- ( C \to [C]\phi_2