通用类型 2 模糊系统:原理、设计与应用
1. 数值结果分析与疑问
在某些情况下,特定数值与 IT2 NT 模糊系统的输出值十分接近。例如,当选择特定参数时,四个 $y_{NT,\alpha}(x_0)$ 的数值彼此非常接近,$y_{WH - NT}(x_0)$ 与其中任何一个 $y_{NT,\alpha}(x_0)$ 几乎没有差异,且 $y_{WH - NT}(x_0)$ 的值 3.23 与 IT2 NT 模糊系统的输出相同。
这引发了一个问题:为什么 $y_{WH - NT}(x_0)$ 和 $y_{NT}(x_0)$ 如此相似?有两个可能的原因:
- 此示例的结果仅基于一个 $x_0$ 的选择,仅依据这一点就得出普遍结论过于仓促。
- 图中的二级隶属函数接近对称($w = 0.6$,对称时 $w = 0.5$),可能正是这种接近对称的特性导致 $y_{WH - NT}(x_0)$ 接近 $y_{NT}(x_0)$。在实际应用中,三角形二级隶属函数的每个顶点因子是设计参数,在设计过程中会进行优化,每个顶点因子最终接近 0.5 的可能性不大。
2. GT2 模糊基函数
如同用 IT2 模糊基函数(FBF)展开来描述特定 IT2 模糊系统的输出很有用一样,对特定 WH GT2 模糊系统的输出进行同样的处理也很有价值。下面通过几个例子说明如何利用之前的结果来获得 WH GT2 模糊系统的 GT2 FBF 展开。
2.1 WH GT2 Mamdani 模糊系统
该系统使用 COS 类型约简 + 端点平均去模糊化。其 GT2 FBF 展开的起点是 (11.51),可整理为:
[