CodeForces - 17E Palisection【Manacher】【前缀和】【差分】

这篇博客主要介绍了如何运用Manacher算法高效地找出字符串中的最长回文子串,并给出了C++实现的详细代码。算法核心是利用回文串的对称性质减少重复计算,提高求解效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://codeforces.com/contest/17/problem/E

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
static const int MAXN=2e6+10;
static const int MAXM=4e6+10;
static const int MOD=51123987;
char s[MAXN];
char s_new[MAXM];
int p[MAXM];
int h[MAXM],t[MAXM];
int n;
int init()
{
    int len=strlen(s);
    s_new[0]='$'; s_new[1]='#';
    int j=2;
    for (int i=0;i<len;i++)
    {
        s_new[j++]=s[i]; s_new[j++]='#';
    }
    s_new[j++]= '^'; s_new[j]='\0';    
    return j;
}
void manacher()
{
    int len=init();
    int max_len=-1;
    int id,mx=0;
    for (int i=1;i<len;i++)
    {
        if(i<mx) p[i]=min(p[2*id-i],mx-i);
        else p[i]=1;
        while(s_new[i-p[i]]==s_new[i+p[i]]) p[i]++;
        if(mx<i+p[i])
        {
            id=i; mx=i+p[i];
        }
    }
}
int main()
{
    scanf("%d%s",&n,s);
    manacher();
    long long cnt=0;
    for(int i=1;i<=2*n+1;i++)
    {
        h[i-p[i]+1]++; h[i+1]--;
        t[i]++; t[i+p[i]]--; 
        cnt=(cnt+p[i]/2)%MOD;
    }
    for(int i=1;i<=2*n+1;i++) h[i]+=h[i-1],t[i]+=t[i-1];
    cnt=cnt*(cnt-1)/2%MOD;
    long long tott=0;
    for(int i=2;i<=2*n-2;i+=2)
    {
        tott=(tott+t[i])%MOD;
        cnt=(cnt-tott*h[i+2]%MOD)%MOD;
    }
    printf("%lld\n",(cnt+MOD)%MOD);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值