43、基于暗通道先验与深度学习算法的图像去雾及驾驶员疲劳检测技术

基于暗通道先验与深度学习算法的图像去雾及驾驶员疲劳检测技术

图像去雾技术:基于暗通道先验的算法解析

在图像去雾领域,基于暗通道先验(Dark Channel Prior, DCP)的算法是一种有效的解决方案。下面我们详细解析这一算法的原理、实现步骤以及实验结果。

光学模型与暗通道先验

在有雾图像的形成过程中,存在一个光学模型。有雾图像的形成可以用公式表示:
- (I(x) = J(x)t(x) + A(1 - t(x))) (公式1)
- (t(x) = e^{-\beta d(x)}) (公式2)

其中,(I(x)) 是有雾图像的像素值,(J(x)) 是场景辐射,(t(x)) 是介质传输率,描述了未散射并到达相机的光的比例,(\beta) 是散射系数,(d(x)) 是场景深度,(A) 是大气光。

暗通道先验是基于对无雾户外图像的统计观察得出的。在非天空区域的图像中,至少有一个颜色通道在某些像素处的强度接近零。通过将彩色图像分解为红、绿、蓝三个基本通道,并从这三个通道中选择强度最小的像素,就可以得到暗通道图像。暗通道 (I_{dark}) 可以用以下公式表示:
(I_{dark}(x) = \min_{y \in \Omega(x)} \left{ \min_{ch \in {r, g, b}} I_{ch}(y) \right}) (公式3)

其中,(\Omega(x)) 是以 (x) 为中心的局部区域,(I_{ch}) 是输入图像的三个(RGB)颜色通道之一。在户外自然图像中,除了天空区域,树木、草地、花朵、山脉、阴影等的暗通道通常非常暗。

传输率估计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值