物体、坐标与积分:几何与物理中的关键概念
1. 曲面上的曲线与曲率
1.1 曲线的参数表示与切向量
设(x = x(u, v))为曲面(M)的参数表示,(C)为曲面(M)上的曲线。曲线(C)可以用其弧长参数(s)表示为(u = u(s))和(v = v(s)),即(x = x(u(s), v(s)))。曲线(C)的单位切向量(t)为:
[t = \frac{dx}{ds} = x_u\frac{du}{ds} + x_v\frac{dv}{ds}]
同时,有(\frac{dt}{ds} = \frac{1}{\rho_C}n_C),其中(\rho_C)和(n_C)分别为曲线(C)的曲率半径和主法向量。
1.2 第二基本量与第二基本形式
通过一系列推导,我们定义了第二基本量(L)、(M)、(N):
[L = x_{uu} \cdot n, M = x_{uv} \cdot n, N = x_{vv} \cdot n]
其中(n = \frac{x_u\times x_v}{|x_u\times x_v|})为曲面(M)的单位法向量。进而得到(\frac{\cos\psi_C}{\rho_C} = L(\frac{du}{ds})^2 + 2M\frac{du}{ds}\frac{dv}{ds} + N(\frac{dv}{ds})^2 = \frac{Ldu^2 + 2Mdudv + Ndv^2}{Edu^2 + 2Fdudv + Gdv^2}),我们称(Ldu^2 + 2Mdudv + Ndv^2)为第二基本形式。使用(k = \frac{dv}{du})(无穷小向量(dx)的方向),有(\frac{\cos\p