线性规划、矩阵博弈与凸分析:理论与应用
1. 线性规划基础
线性规划在优化问题中有着广泛的应用。首先来看一个重要的定理:
定理 5.8 :若向量对 (x \in F),(y \in G) 满足以下条件,则为最优解。
- 当 ((Ax)_i > b_i) 时,(y_i = 0) (式 5.59)
- 当 ((A^T y)_j < c_j) 时,(x_j = 0) (式 5.60)
证明思路 :
由于 (y \geq 0),(Ax \geq b) 以及式 5.59,可得 (b \cdot y = Ax \cdot y)(式 5.61);又因为 (x \geq 0),(A^T y \leq c) 以及式 5.60,有 (c \cdot x = Ax \cdot y)(式 5.62)。而定理 5.7 的证明保证了若 (y \cdot b = c \cdot x),则 (x \in F) 和 (y \in G) 为最优解,由式 5.61 和式 5.62 可推出该等式。
示例问题 :考虑最小化 (x_1 + x_2) 的问题,约束条件为 (x_1 \geq 0),(x_2 \geq 0),(2x_1 \geq 3),(x_1 + 3x_2 \geq 12)。我们需要给出其对偶问题,并使用单纯形法求解,最后验证两个问题具有相同的值。
操作步骤如下:
1. 写出原问题的矩阵形式 :将约束条件转化为矩阵不等式和等式形式。
2. 根