支持向量机SVM----机器学习读书笔记

本文介绍了支持向量机(SVM)的优势与局限性,包括其泛化错误率低、计算开销不大及结果易于解释等特点。同时指出SVM对参数调节和核函数选择敏感,并仅直接适用于二类分类问题。此外还详细阐述了SVM的工作流程,从数据收集、准备到最终的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优点:泛化错误率低,计算开销不大,结果易解释。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。

适用数据类型:数值型和标称型数据。

流程:
(1) 收集数据:可以使用任意方法。
(2) 准备数据:需要数值型数据。
(3) 分析数据:有助于可视化分隔超平面。
(4) 训练算法: SVM的大部分时间都源自训练,该过程主要实现两个参数的调优。
(5) 测试算法:十分简单的计算过程就可以实现。

(6) 使用算法:几乎所有分类问题都可以使用SVM,值得一提的是, SVM本身是一个二类分类器,对多类问题应用SVM需要对代码做一些修改。

支持向量support vector)就是离分隔超平面最近的那些点。接下来要试着最大化支持向量到分隔面的距离,需要找到此问题的优化求解方法。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值