优点:泛化错误率低,计算开销不大,结果易解释。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。
适用数据类型:数值型和标称型数据。
流程:
(1) 收集数据:可以使用任意方法。
(2) 准备数据:需要数值型数据。
(3) 分析数据:有助于可视化分隔超平面。
(4) 训练算法: SVM的大部分时间都源自训练,该过程主要实现两个参数的调优。
(5) 测试算法:十分简单的计算过程就可以实现。
(6) 使用算法:几乎所有分类问题都可以使用SVM,值得一提的是, SVM本身是一个二类分类器,对多类问题应用SVM需要对代码做一些修改。
支持向量(support vector)就是离分隔超平面最近的那些点。接下来要试着最大化支持向量到分隔面的距离,需要找到此问题的优化求解方法。