(算法岗)美团春季实习生面试复盘

本文详细介绍了美团算法岗位一面的面试内容,涵盖了FCN结构、特征图大小选择、1*1卷积的作用、参数量对性能的影响、梯度消失与爆炸的解决方案、激活函数的作用、决策树的种类、SVM对偶问题转换的原因、随机森林的随机性、XGBoost的解释,以及ROC曲线和分类评价标准。此外,还涉及编程题目,如素数计算优化和快速排序实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

美团算法岗,一面:

  1. 自我介绍、项目介绍

  2. 项目问题

  3. FCN用过吗,结构是怎样的:https://blog.csdn.net/qq_36269513/article/details/80420363

  4. FCN输出的feature map何时需要大一点、何时小一点:

  5. 1*1 Conv的作用:https://blog.csdn.net/qq_34798152/article/details/102307683

  6. 参数减少会影响性能吗?为什么?
    不会,一个较好的例子是AlexNet和SqueezeNet参数量差了50倍,却有相似的性能。

  7. 梯度消失、梯度爆炸:BN、梯度剪裁、正则化、Skip(Resnet中提出的)、换激活函数。

  8. 激活函数作用

  9. 决策树的种类:https://zhuanlan.zhihu.com/p/85731206

  10. SVM为什么要转换为对偶问题:https://www.zhihu.com/question/300015357/answer/519104070

  11. 随机森林的随机是指什么

  12. 解释xgboost:https://zhuanlan.zhihu.com/p/87885678

  13. 特征归一化在SVM和RF中都使用吗?

    SVM可以在特征取值范围差异过大时采用归一化,RF不需要,因为决策树不需要:https://www.pythonheidong.com/blog/article/454450/cd0f70bfb629e0fab000/

  14. 解释ROC

  15. 分类评价标准有哪些:https://blog.csdn.net/hermito/article/details/51076728

  16. 编程:m-n之间有多少个素数,如何优化:2~sqrt(n),优化为小于sqrt(n)的素数,优化为线性素数筛

  17. 无序数组的中位数

  18. 编程:快排

<think>好的,用户想要了解大数据开发实习生面试题目及答案。我需要先理清楚大数据开发实习生面试通常会涉及哪些方面。根据之前的资料,大数据开发位的面试问题一般包括技术基础、编程能力、项目经验、数据处理和系统设计等。 首先,技术基础部分可能会涉及Hadoop生态系统,比如HDFS、MapReduce、YARN这些组件的原理。用户作为实习生,可能对这些概念还不太熟悉,需要简明扼要地解释。比如HDFS的架构,分块存储机制,副本策略,这些是常见的问题点。 然后是编程能力,尤其是Java或Scala的基础,还有SQL和Shell脚本。需要举一些具体的例子,比如MapReduce的WordCount示例,SQL的窗口函数应用,这些能帮助用户理解如何实际操作。 项目经验方面,实习生可能没有太多实际经验,但如果有相关课程项目或自学项目,需要指导他们如何描述项目中的技术选型、难点和解决方案。比如使用Hive进行数据分析时遇到的问题,如何优化查询性能。 数据处理和算法部分,可能需要解释ETL流程、数据倾斜的处理方法。这里需要给具体的解决策略,比如增加并行度、使用随机前缀等。另外,数据倾斜是常见问题,应该详细说明原因和解决办法。 系统设计题通常考察实际应用能力,比如设计实时数据统计系统,需要提到Kafka、Flink等技术栈,并解释各组件的作用。这部分要确保逻辑清晰,步骤明确。 另外,要注意面试中的行为问题,如团队合作、学习能力等,这些也是实习生容易被问到的点。需要提醒用户准备具体的例子,展示他们的学习过程和解决问题的能力。 可能用户的需求不仅仅是题目和答案,更希望了解如何组织回答,展示自己的理解和实践经验。因此,在答案部分不仅要正确,还要有结构,比如先解释概念,再结合实际应用,最后提到优化或注意事项。 需要检查是否有遗漏的重要知识点,比如Spark与Hadoop的区别,Hive的内部表和外部表,这些也是高频问题。同时,确保答案准确,比如HDFS默认块大小是128MB而非64MB,避免过时的信息误导用户。 最后,提醒用户面试时结合自身经历,灵活运用知识点,即使没有实际项目经验,也可以通过课程设计或自学项目来展示能力。同时,强调沟通和问题解决能力的重要性,这在实习生面试中同样关键。</think>以下是针对大数据开发实习生位的常见面试题目及参考答案整理,分为**技术基础、编程能力、场景设计**三部分,帮助候选人系统化准备: --- ### 一、技术基础类问题 #### 1. 简述HDFS的存储原理 **参考答案** HDFS采用主从架构,包含NameNode(元数据管理)和DataNode(实际数据存储)。文件被切分为固定大小的Block(默认128MB),每个Block存储多副本(默认3副本)以保障容错性。写入时通过流水线复制机制提高效率,读取时客户端就近获取数据。 #### 2. MapReduce的Shuffle过程是什么? **参考答案** Shuffle是Map到Reduce的关键阶段,包含: - **Map端**:输数据按Key排序后写入环形缓冲区,达到阈值时溢写(Spill)到磁盘,生成多个分区文件。 - **Reduce端**:通过HTTP拉取对应分区的数据,合并排序后输入Reduce函数。 **优化点**:Combiner减少网络传输,调整缓冲区大小降低磁盘IO。 #### 3. Hive内部表与外部表的区别 **参考答案** - **内部表**:数据由Hive管理,删除表时元数据和HDFS数据均被清除。 - **外部表**(`EXTERNAL TABLE`):仅管理元数据,删除表时仅删除元数据,HDFS数据保留。 **典型场景**:原始日志用外部表避免误删,中间结果用内部表自动清理。 --- ### 二、编程与SQL能力 #### 1. 编写Scala代码实现TopN查询 ```scala val data = spark.read.parquet("logs") data.groupBy("user_id") .agg(count("*").alias("cnt")) .orderBy(desc("cnt")) .limit(10) .show() ``` **关键点**:使用Spark SQL聚合函数+排序,避免collect到Driver导致OOM。 #### 2. SQL统计连续3天登录的用户 ```sql SELECT user_id FROM ( SELECT user_id, login_date - ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY login_date) AS grp FROM login_table ) t GROUP BY user_id, grp HAVING COUNT(*) >= 3; ``` **原理**:利用窗口函数生成连续日期的共同标识(grp),分组后筛选满足条件的组。 --- ### 三、场景设计题 #### 设计实时统计UV的系统 **参考答案** 1. **数据采集**:用户行为日志通过Kafka实时传输,使用Flink消费数据流。 2. **去重逻辑**: - 使用Flink状态(State)存储每个用户的最后访问时间,过滤24小时内的重复请求。 - 或结合Redis HyperLogLog进行近似去重(适合海量数据)。 3. **结果存储**:UV结果每分钟更新到HBase或MySQL,前端通过API查询展示。 **容错机制**:Flink Checkpoint保证Exactly-Once语义,Kafka分区备份防数据丢失。 --- ### 高频进阶问题 1. **数据倾斜解决方案** - 预处理:过滤NULL值、加盐(Salting)分散热点Key - SQL优化:`MAPJOIN`处理小表关联,`DISTRIBUTE BY`强制重分区 2. **Spark与MapReduce差异** - Spark基于内存迭代计算,MR依赖磁盘;Spark提供DataFrame高阶API,开发效率更高。 --- ### 准备建议 1. **项目复盘**:确保能清晰描述项目中技术选型原因(如为何选Kafka而非RabbitMQ)。 2. **模拟实战**:在本地搭建Hadoop集群,实操Hive SQL调优(如EXPLAIN分析执行计划)。 3. **行业知识**:了解当前企业常用架构(如Lambda/Kappa架构的适用场景)。 💡 提示:实习生面试更关注基础扎实度与学习潜力,回答时可通过对比不同技术(如Hive vs Spark SQL)展现思考深度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值