JAVA:实现Convolution卷积 FFT算法(附完整源码)

本文详细探讨了如何使用Java实现基于快速傅里叶变换(FFT)的卷积算法,包括关键步骤和完整源码示例,适合对算法和Java编程感兴趣的读者深入理解卷积与FFT的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JAVA:实现Convolution卷积 FFT算法

package com.thealgorithms.maths;
import java.util.ArrayList;
public class ConvolutionFFT {
   
   

    private s
以下是Java实现卷积完整源码,包含了常规卷积和边缘扩展卷积: ```java import java.awt.image.BufferedImage; public class Convolution { public static BufferedImage convolve(BufferedImage img, double[][] kernel) { int width = img.getWidth(); int height = img.getHeight(); BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); int kWidth = kernel.length; int kHeight = kernel[0].length; int kCenterX = kWidth / 2; int kCenterY = kHeight / 2; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { double r = 0, g = 0, b = 0; for (int j = 0; j < kHeight; j++) { for (int i = 0; i < kWidth; i++) { int pixelX = x + i - kCenterX; int pixelY = y + j - kCenterY; if (pixelX >= 0 && pixelX < width && pixelY >= 0 && pixelY < height) { int rgb = img.getRGB(pixelX, pixelY); double k = kernel[i][j]; r += ((rgb >> 16) & 0xFF) * k; g += ((rgb >> 8) & 0xFF) * k; b += (rgb & 0xFF) * k; } } } int resultRGB = ((int) r << 16) | ((int) g << 8) | (int) b; result.setRGB(x, y, resultRGB); } } return result; } public static BufferedImage convolveWithEdgeExtension(BufferedImage img, double[][] kernel) { int width = img.getWidth(); int height = img.getHeight(); BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); int kWidth = kernel.length; int kHeight = kernel[0].length; int kCenterX = kWidth / 2; int kCenterY = kHeight / 2; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { double r = 0, g = 0, b = 0; for (int j = 0; j < kHeight; j++) { for (int i = 0; i < kWidth; i++) { int pixelX = x + i - kCenterX; int pixelY = y + j - kCenterY; if (pixelX < 0) { pixelX = 0; } else if (pixelX >= width) { pixelX = width - 1; } if (pixelY < 0) { pixelY = 0; } else if (pixelY >= height) { pixelY = height - 1; } int rgb = img.getRGB(pixelX, pixelY); double k = kernel[i][j]; r += ((rgb >> 16) & 0xFF) * k; g += ((rgb >> 8) & 0xFF) * k; b += (rgb & 0xFF) * k; } } int resultRGB = ((int) r << 16) | ((int) g << 8) | (int) b; result.setRGB(x, y, resultRGB); } } return result; } } ``` 其中,`convolve` 函数实现了常规的卷积操作,`convolveWithEdgeExtension` 函数实现了边缘扩展卷积操作。两个函数的参数均为输入图像和卷积核,返回值为经过卷积处理后的图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值