李宏毅2020机器学习课程笔记(三)- CNN、半监督学习、RNN

本笔记主要涵盖了李宏毅2020年机器学习课程的第三部分,讲解了卷积神经网络(CNN)的工作原理和参数减少的优势,半监督学习的概念与应用,以及循环神经网络(RNN)的结构和在自然语言处理中的应用。此外,还提及了GNN、LSTM的内部机制及解决梯度消失问题的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关专题: 李宏毅2020机器学习资料汇总
本系列笔记:

  1. 李宏毅2020机器学习课程笔记(一)- 分类与回归
  2. 李宏毅2020机器学习课程笔记(二)- 深度学习
  3. 李宏毅2020机器学习课程笔记(三)- CNN、半监督、RNN


4. CNN

Convolutional Neural Network(P17)

首先,李宏毅老师介绍了为什么要用CNN来处理图像。

Q:明明 DNN 也可以处理图像,那么为什么要用 CNN 呢?

A:普通的 DNN 用的是全连接层,参数数量特别多。因此,可以根据图像特征,将DNN 简化为CNN,基于以下几个观察(特性)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iteapoy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值