Bloom Filter

1 Overview

    Bloom filter最早由 Burton Howard Bloom提出,是一种用于判断成员是否存在于某个集合中的数据结构。 Bloom filter的判断基于概率论:

  • 如果某个成员存在于集合中,那么Bloom filter不会返回假(即不存在),也就是说false negative是不可能的。
  • 如果某个成员实际上不存在于集合中,Bloom filter可能返回真(即存在),这种情况被称为false positive。

    Bloom filter通常被实现为一个包含 m 位的位数组(bit array),所有位的初始值都为0。 Bloom filter支持以下两种类型的操作:

  • add。将成员添加到Bloom filter中。以该成员为参数调用 k 个索引函数(index functions),得到 k 个位数组的索引值,取值范围是 [0, m), 然后将位数组的对应位设置为1。
  • query。判断某个成员是否已经添加到Bloom filter中。以该成员为参数调用 k 个索引函数,得到 k 个位数组的索引值,然后根据这些索引值检查位数组:当位数组中所有的对应位均为1时,那么认为该成员已经存在。

    如果query的结果为真(即positive),那么实际上存在以下两种可能性:

  • 该成员已经被add到集合中,即该成员的确存在。
  • 该成员未被add到集合中,但是query过程中检查的所有位均被设置为1(由于添加的其它成员导致)。这种情况被称为false positive。

    传统的Bloom filter 不支持从集合中删除成员。对于每个添加到Bloom filter中的成员,实际上将其位数组中的 k 位设置为1。尽管将这些位重置为0可以保证从Bloom filter中删除该成员,但是这样做的副作用是可能会影响某些其它成员,因为其它成员也可能被映射到这些被重置为0的位中的一位或者多位, 从而最终导致false negatives。对于Bloom filter而言,false negatives是不被允许的。 Counting Bloom filter由于采用了计数,因此支持remove操作。

    Bloom filter 使用的 k 个index functions,有时也被称为hash functions,它们通常被假定为彼此独立,返回值在可能的取值范围内均匀分布(这是以下一系列数学证明的基础)。

 

2 The Math

    Bloom filter的基本概念并不复杂,接下来分析一下query操作对某个未被添加的成员返回positive(即false positive)的概率:

    假设p是位数组中某一位为1的概率, 那么false positive的概率是 pk 。如果n是已经添加到Bloom filter中的成员个数,那么 p = 1 – (1 – 1/m)nk,经过一系列推导得到 p ≈ ( 1 – e-kn/mk 当 k = m / n * ln2 时(ln 即 loge ),p为最小值。 例如当k = 8, m/n = 10时, false positive的理论值为0.00846。以下是段计算false positive的实例代码:

public static double calculateFalsePositiveProbability(int k, int m, int n) {
	return Math.pow((1 - Math.exp(-k * (double) n  / (double) m)), k);
}

 

    对于某些应用而言,false positive的概率已经是一个足够好的判断Bloom filter准确性的指标,Peter C.Dillinger 和 Panagiotis Manolios 在其Bloom Filters in Probablistic Verfification的论文中指出,对于query过程中的不确定性, state omission 是一个更合适的指标。建议感兴趣的读者阅读该论文,顺便也可以复习一下相关的数学知识。

 

3 Refinement

    So far, so good。 跟普通的HashMap相比, Bloom filter不需要在内存中保存key和value, 而是位数组中的若干个位即可,这在内存使用上是个巨大的节省,当然前提是能容忍一定概率的false positives。但是传统的Bloom filter存在以下两个严重的缺陷:

  • 为了保证足够低的false positive概率,通常索引函数的个数 k 比较大(例如十几甚至几十,但通常不超过32)。 能找到这么多个random,uniform and independent的索引函数并不是一件容易的事情。
  • 数量众多的索引函数,导致add和query的性能不高。

    Peter C.Dillinger 和 Panagiotis Manolios在其论文中指出,fingerprinting Bloom filter可以有效地减少索引函数的个数,并且对准确性的影响可以小到忽略。这对于传统的Bloom filter来说,是个重大的改进。笔者使用了其中介绍的triple hashing,认为效果比较明显。

 

4 Implementation

    如果Google以Java实现的Bloom filter, java-bloomfilter 可能是最容易找到的实现之一。它采用的是传统的Bloom filter算法:使用的 k 个索引函数(默认都是MD5),只是索引函数在进行计算时对参数的加盐(salting)不同而已。笔者认为 java-bloomfilter 的性能可能有待提升。

    Hadoop common的util包中也提供了一个Bloom Filter的实现,此外其hash包还提供了JenkinsHash 和 MurmurHash 两个Hash算法。笔者感觉Hadoop 的Bloom filter的实现方式类似fingerprinting Bloom filter,但是没有使用double hashing 或者tripple hashing。

    此外关于位数组的实现方式,可能最直接想法的是使用java.util.BitSet。不过笔者认为如果处理的数据量很大、或者性能要求比较高,那么不建议使用java.util.BitSet, 因为java.util.BitSet的内存使用方式、总体性能都不是很理想。

 

5 Reference

  1. Bloom Filters in Probablistic Verfification. Peter C.Dillinger and Panagiotis Manolios
  2. Hadoop的Bloom filter实现。http://hadoop.apache.org/common/
  3. java-bloomfilter.  http://code.google.com/p/java-bloomfilter/
### Bloom Filter 数据结构概述 布隆过滤器是一种用于快速、节省内存地判断元素是否属于某个集合的数据结构[^5]。其核心在于使用位数组和多个哈希函数来表示集合成员关系,具有极高的查询效率和较低的存储开销。 #### 原理说明 布隆过滤器通过一系列独立随机分布的哈希函数将待加入集合的对象映射到位向量的同位置上;当检查某对象是否存在于给定集合内时,只需验证这些对应索引处是否有标记即可完成判定过程。值得注意的是,由于可能存在同输入经过相同哈希运算后指向同一地址的情况(即碰撞),因此即使所有测试均返回肯定结果也能完全排除误判的可能性——这就是所谓的“假阳现象”。过只要合理配置参数并选用足够多且均匀散列性质良好的哈希算法,则能够有效控制此类错误发生的几率至可接受范围内[^1]。 ```python import mmh3 from bitarray import bitarray class SimpleBloomFilter(object): def __init__(self, size=1000000, hash_num=7): self.size = size self.hash_num = hash_num self.bit_array = bitarray(size) self.bit_array.setall(0) def add(self, string): for seed in range(self.hash_num): result = mmh3.hash(string, seed) % self.size self.bit_array[result] = 1 def lookup(self, string): for seed in range(self.hash_num): result = mmh3.hash(string, seed) % self.size if not self.bit_array[result]: return "Nope" return "Probably yes" bloom_filter_example = SimpleBloomFilter() print(bloom_filter_example.lookup("hello")) bloom_filter_example.add("hello") print(bloom_filter_example.lookup("hello")) ``` 上述代码展示了如何创建一个简单的布隆过滤器类 `SimpleBloomFilter` 并对其进行基本操作。这里采用了 MurmurHash3 这种非加密级但性能优异的通用型哈希函数作为内部组件之一,并借助 Python 的第三方库 `bitarray` 来管理底层二进制序列[^2]。 #### 应用场景分析 鉴于布隆过滤器具备高效的存取特性及其特有的容错机制,在实际工程中有广泛的应用价值: - **缓存穿透防护**:防止恶意请求绕过本地缓存直接访问数据库造成压力过大; - **爬虫去重处理**:避免重复抓取已收录网页资源浪费带宽; - **黑名单/白名单匹配**:加速身份认证流程减少必要的磁盘I/O次数; - **分布式系统一致性校验**:辅助节点间同步状态信息提高整体可靠性等[^4]。 然而需要注意的是,传统意义上的布隆过滤器并支持元素移除功能,因为这可能会导致原本存在的条目被误删从而引发更多问题。针对这一局限性,研究者们提出了诸如计数式布隆过滤器(CBF) 或者 cuckoo filters 等改进版本以适应更复杂的需求环境[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值