AI应用最大的问题不是技术,是数据问题

AI应用最大的问题不是技术,是数据问题

人工智能技术发展如火如荼,从聊天模型进化到实际应用场景。
国家大力支持,资本热捧,机会与挑战并存
然而,深入AI应用实践后发现,真正阻碍AI落地的并非技术短板,而是数据瓶颈

[tu]

套壳应用的尴尬处境

张总负责某国企数字化转型,决定引入AI助手提升工作效率。

项目上线后,员工反馈:“这助手只会回答通用问题,问它公司制度、流程、专业知识就一窍不通。

李工程师在医疗科技公司工作,开发了基于某通用大模型的医疗诊断助手。

测试阶段发现,它能讲述常见疾病知识,却无法准确识别罕见病例特征,更无法结合医院历史病例提供参考。

[tu]

这些真实场景展现了当下AI套壳应用的尴尬局面

所谓套壳应用,指直接调用通用大模型API,添加简单界面后就推向市场的产品。这类应用看似便捷,实则难以解决行业痛点。

通用大模型基于互联网公开数据训练,缺乏特定行业专业数据支撑。它们像万金油,样样通,样样松。

问它"人工智能的发展趋势"能侃侃而谈,问它"贵公司去年第四季度销售额环比增长率"就哑口无言。

问题核心在于数据断层—通用模型与具体应用场景之间缺乏必要的专业数据连接。

定制模型:数据为王的时代

[tu]

某行3年前开始AI应用探索,先尝试接入市面上流行大模型,效果不尽如人意。

去年,他们投入资源,收集整理内部十年客户服务记录、规章制度、产品说明书、专家经验,构建专属知识库,基于通用模型基座微调出行业定制模型

上线后,智能客服准确率提升40%,业务处理效率提高56%。

王医生负责一家三甲医院的智慧医疗项目。

他不满足于市面上的通用医疗AI助手,决定利用医院20年积累的诊疗数据、医学影像资料和专家会诊记录,训练定制化医疗模型

该模型能分析患者历史数据,结合最新病例提供诊断建议,辅助医生决策,大幅减少误诊率。

这两个案例展现了数据在AI应用中的核心地位

定制模型区别于通用模型的关键,正是行业专属数据的深度融合。

数据就像模型的"养料",决定了它的能力边界。

没有金融领域数据支撑的模型,如何理解复杂金融产品特性?没有医疗数据训练的模型,如何精准识别疾病特征?没有法律案例喂养的模型,如何准确解读法律条文含义?

专业数据的价值远超算法创新

当下,AI技术架构日趋成熟,算法优化空间有限,真正能带来竞争壁垒的是独特的数据资源。

结语

[tu]

智能化转型进入下半场,企业不再追逐表面的AI应用,而是深耕数据资产建设

未来AI应用竞争格局取决于谁拥有更优质的数据资源,谁能构建更系统的数据资产体系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据AI智能圈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值