44、架构现代化赋能团队:从启动到收尾的全面指南

架构现代化赋能团队:从启动到收尾的全面指南

架构现代化的基础与目标

在架构现代化的进程中,赋能团队发挥着关键作用。他们通过构建多条升级路径,减少了团队间的依赖关系,使团队能够更快速地做出决策。同时,用 X-as-a-service 关系取代了高成本的交接和协作交互,让团队有更多精力专注于交付改进。此外,还确保了所有相关 IT 系统的明确所有权。

产品部门将与其业务范围相关的流程和技术整合在一起,包括激活平台、订单管理系统平台和客户自助实现团队,它们之间通过 X-as-a-service 关系进行交互。平台工程部门则通过 X-as-a-service 关系为其他流对齐团队和平台提供支持。所有自助实现功能通过网站向电信客户开放,网站平台也将其能力以 X-as-a-service 关系提供给订单管理系统团队和激活平台使用。

在确定边界的过程中,João 和运营模型探索团队不仅帮助组织确定合适的边界,还协助建立了操作手册和原则,并去除了不再有用的原则。这使得组织能够扩大现代化方法的应用范围,确保所有改进都与公司目标一致。操作手册成为分析和优先排序现代化计划的宝贵工具,帮助电信公司人员识别不必要的依赖关系、边界不匹配以及团队过高的认知负担,并提供解决挑战和改善流程的指导和技术。

João 强调,电信公司的现代化工作需要采用社会技术方法,即对技术和社会系统进行联合优化。通过关注边界和团队实际能达成的目标,讨论并优先考虑最能支持组织目标的技术改进。忽视社会方面,就无法实现快速流程。

架构现代化赋能团队(AMET)的收尾工作

与所有赋能团队一样,AMET 并非永久存在。一旦团队达成既定目标,就可以开始收尾。AMET 的使命是使组织能

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值