pytorch 计算相似度,相关系数

本文介绍了在PyTorch中如何计算矩阵的相关系数矩阵,以及使用torch.cosine_similarity进行向量相似度计算。虽然cosine_similarity能判断方向,但其精度有限。此外,还提到了其他如欧式距离、Cosine、Bilinear、TriLinear、Multihead等向量相似度计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.cosine_similarity 可以对两个向量或者张量计算相似度

结果:可能为负数,只能判断方向,相似度精度比较低。

比如1和10000的相似度为1,1和-1的相似度为-1。

import torch

input1 = torch.randn(10, 12)
input2 = torch.randn(10, 12)
output = torch.cosine_similarity(input1, input2, dim=1)
print(output)


hg1 = torch.FloatTensor([-1])
hg2 = torch.FloatTensor([1])
value=torch.cosine_similarity(hg1, hg2, dim=0)
print(value)


pytorch计算欧式距离

torch.dist(hg1, hg2, p=2)

如果自己写的话就是:(因为很简单,大多数人自己写),Pytorch里封装了这个距离函数

torch.sqrt(torch.sum((hg1-hg2)**2))

Hamming 距离,汉密尔顿距离

torch.dist(hg1, hg2, p=1)


 

一些计算向量相似度的函数,例如Cosine, BiLinear, T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值