题意以及限制条件
-
题目:
-
限制条件:
想到的所有可能解法
-
Ways_1——排列组合
- 时间复杂度——min(O(m), O(n));空间复杂度——O(1)。
- 基础知识:
- 此代码模板为计算组合数的通用代码模板。
-
Ways_2——DP1(顺推)
- 时间复杂度——O(mn);空间复杂度——O(n);
- f[j]:从上往下从(0,0)到达位置(i - 1,j)的路径条数;
- f[j - 1]:从左往右从(0,0)到达位置(i,j - 1)的路径条数;
- 经过迭代计算后的f[j]:表示从位置(0,0)到达位置(i,j)的路径条数;
- 当且仅当(i,j)=(m - 1, n - 1)时,f[n - 1]存储即是最终的答案。
-
Ways_3——DP2(逆推)
- 时间复杂度——O(mn);空间复杂度——O(n);
- f[j]:从下往上从(m - 1,n - 1)到达位置(i + 1,j)的路径条数(回退);
- f[j + 1]:从右往左从(m - 1,n - 1)到达位置(i,j + 1)的路径条数(回退);
- 经过迭代计算后的f[j]:表示从位置(i,j)到达位置(m - 1,n - 1)的路径条数;
- 当且仅当(i,j)=(0, 0)时,f[0]存储即是最终的答案。
-
Ways_4——DP3(顺推)
- 时间复杂度——O(mn);空间复杂度——O(mn);
- dp[i - 1][j]:从上往下从(0,0)到达位置(i - 1,j)的路径条数;
- dp[i][j - 1]:从左往右从(0,0)到达位置(i,j - 1)的路径条数;
- 经过迭代计算后的dp[i][j]:表示从位置(0,0)到达位置(i,j)的路径条数;
- 当且仅当(i,j)=(m - 1, n - 1)时,dp[m - 1][n - 1]存储即是最终的答案。
-
Ways_5——DP4(逆推)
- 时间复杂度——O(mn);空间复杂度——O(mn);
- dp[i + 1][j]:从下往上从(m - 1,n - 1)到达位置(i + 1,j)的路径条数(回退);
- dp[i][j + 1]:从右往左从(m - 1,n - 1)到达位置(i,j + 1)的路径条数(回退);
- 经过迭代计算后的[dp[i]j]:表示从位置(i,j)到达位置(m - 1,n - 1)的路径条数;
- 当且仅当(i,j)=(0, 0)时,dp[0][0]存储即是最终的答案。
-
Ways_6——记忆化递归
- 时间复杂度——O(mn);空间复杂度——O(mn)。
对应的代码
- Ways_1
class Solution {
public int uniquePaths(int m, int n) {
//解法1:排列组合
long ans = 1;
if (m > n) return uniquePaths(n, m);
for (int x = n, y = 1; y < m; ++x, ++y) {
ans = ans * x / y;
}
return (int) ans;
}
}
- Ways_2
class Solution {
public int uniquePaths(int m, int n) {
//空间复杂度为O(n)的解法2——顺推
int[] f = new int[n];
f[0] = 1;
for (int i = 0; i < m; ++i){
for (int j = 1; j < n; ++j){
f[j] += f[j-1] ;
}
}
return f[n-1];
}
}
- Ways_3
class Solution {
public int uniquePaths(int m, int n) {
//空间复杂度为O(n)的解法3——逆推
int[] f = new int[n];
f[n - 1] = 1;
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 2; j >= 0; --j) {
if (i == m - 1) {
f[j] = f[j + 1];
} else {
f[j] += f[j + 1];
}
}
}
return f[0];
}
}
- Ways_4
class Solution {
public int uniquePaths(int m, int n) {
//解法4:空间复杂度为O(mn)——顺推
int[][] dp = new int[m][n];
for (int i = 0; i < m; ++i) {
dp[i][0] = 1;
}
for (int j = 1; j < n; ++j) {
dp[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
- Ways_5
class Solution {
public int uniquePaths(int m, int n) {
//解法5:空间复杂度为O(mn)——逆推
int[][] dp = new int[m][n];
for (int i = m - 1; i >= 0; --i) {
dp[i][n - 1] = 1;
}
for (int j = n - 2; j >= 0; --j) {
dp[m - 1][j] = 1;
}
for (int i = m - 2; i >= 0; --i) {
for (int j = n - 2; j >= 0; --j) {
dp[i][j] = dp[i + 1][j] + dp[i][j + 1];
}
}
return dp[0][0];
}
}
- Ways_6
class Solution {
public int uniquePaths(int m, int n) {
int[][] memo = new int[m][n];
return helper(memo, 0, 0);
}
private int helper(int[][] memo, int i, int j) {
//Terminator
if (i == memo.length || j == memo[0].length) {
return 0;
}
if (i == memo.length - 1 && j == memo[0].length - 1) {
return 1;
}
//Current Logic && Drill Down
return memo[i][j] = memo[i][j] == 0 ? helper(memo, i + 1, j) + helper(memo, i, j + 1) : memo[i][j];
//Restore Current Data
}
}