LeetCode_62

题意以及限制条件

  1. 题目LeetCode_62-1

  2. 限制条件:
    LeetCode_62-2

想到的所有可能解法

  • Ways_1——排列组合

    1. 时间复杂度——min(O(m), O(n));空间复杂度——O(1)。
    2. 基础知识:LeetCode_62-3
    3. 此代码模板为计算组合数的通用代码模板。
  • Ways_2——DP1(顺推)

    1. 时间复杂度——O(mn);空间复杂度——O(n);
    2. f[j]:从上往下从(0,0)到达位置(i - 1,j)的路径条数;
    3. f[j - 1]:从左往右从(0,0)到达位置(i,j - 1)的路径条数;
    4. 经过迭代计算后的f[j]:表示从位置(0,0)到达位置(i,j)的路径条数;
    5. 当且仅当(i,j)=(m - 1, n - 1)时,f[n - 1]存储即是最终的答案。
  • Ways_3——DP2(逆推)

    1. 时间复杂度——O(mn);空间复杂度——O(n);
    2. f[j]:从下往上从(m - 1,n - 1)到达位置(i + 1,j)的路径条数(回退);
    3. f[j + 1]:从右往左从(m - 1,n - 1)到达位置(i,j + 1)的路径条数(回退);
    4. 经过迭代计算后的f[j]:表示从位置(i,j)到达位置(m - 1,n - 1)的路径条数;
    5. 当且仅当(i,j)=(0, 0)时,f[0]存储即是最终的答案。
  • Ways_4——DP3(顺推)

    1. 时间复杂度——O(mn);空间复杂度——O(mn);
    2. dp[i - 1][j]:从上往下从(0,0)到达位置(i - 1,j)的路径条数;
    3. dp[i][j - 1]:从左往右从(0,0)到达位置(i,j - 1)的路径条数;
    4. 经过迭代计算后的dp[i][j]:表示从位置(0,0)到达位置(i,j)的路径条数;
    5. 当且仅当(i,j)=(m - 1, n - 1)时,dp[m - 1][n - 1]存储即是最终的答案。
  • Ways_5——DP4(逆推)

    1. 时间复杂度——O(mn);空间复杂度——O(mn);
    2. dp[i + 1][j]:从下往上从(m - 1,n - 1)到达位置(i + 1,j)的路径条数(回退);
    3. dp[i][j + 1]:从右往左从(m - 1,n - 1)到达位置(i,j + 1)的路径条数(回退);
    4. 经过迭代计算后的[dp[i]j]:表示从位置(i,j)到达位置(m - 1,n - 1)的路径条数;
    5. 当且仅当(i,j)=(0, 0)时,dp[0][0]存储即是最终的答案。
  • Ways_6——记忆化递归

    1. 时间复杂度——O(mn);空间复杂度——O(mn)。

对应的代码

  • Ways_1
class Solution {
    public int uniquePaths(int m, int n) {
		//解法1:排列组合
        long ans = 1;
        if (m > n) return uniquePaths(n, m);
        for (int x = n, y = 1; y < m; ++x, ++y) {
            ans = ans * x / y;
        }
        return (int) ans;
    }
}
  • Ways_2
class Solution {
    public int uniquePaths(int m, int n) {
		//空间复杂度为O(n)的解法2——顺推
		int[] f = new int[n];
        f[0] = 1;
        for (int i = 0; i < m; ++i){
            for (int j = 1; j < n; ++j){
                f[j] += f[j-1] ;
            }
        }
        return f[n-1];
    }
}
  • Ways_3
class Solution {
    public int uniquePaths(int m, int n) {
        //空间复杂度为O(n)的解法3——逆推
        int[] f = new int[n];
        f[n - 1] = 1;
        for (int i = m - 1; i >= 0; --i) {
            for (int j = n - 2; j >= 0; --j) {
                if (i == m - 1) {
                    f[j] = f[j + 1];
                } else {
                    f[j] += f[j + 1];
                }
            }
        }
        return f[0];
    }
}
  • Ways_4
class Solution {
    public int uniquePaths(int m, int n) {
		//解法4:空间复杂度为O(mn)——顺推
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; ++i) {
            dp[i][0] = 1;
        }
        for (int j = 1; j < n; ++j) {
            dp[0][j] = 1;
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
}
  • Ways_5
class Solution {
    public int uniquePaths(int m, int n) {
		//解法5:空间复杂度为O(mn)——逆推
        int[][] dp = new int[m][n];
        for (int i = m - 1; i >= 0; --i) {
            dp[i][n - 1] = 1;
        }
        for (int j = n - 2; j >= 0; --j) {
            dp[m - 1][j] = 1;
        }
        for (int i = m - 2; i >= 0; --i) {
            for (int j = n - 2; j >= 0; --j) {
                dp[i][j] = dp[i + 1][j] + dp[i][j + 1];
            }
        }
        return dp[0][0];
    }
}
  • Ways_6
class Solution {
    public int uniquePaths(int m, int n) {
        int[][] memo = new int[m][n];
        return helper(memo, 0, 0);
    }
    private int helper(int[][] memo, int i, int j) {
        //Terminator
        if (i == memo.length || j == memo[0].length) {
            return 0;
        }
        if (i == memo.length - 1 && j == memo[0].length - 1) {
            return 1;
        }
        //Current Logic && Drill Down
        return memo[i][j] = memo[i][j] == 0 ? helper(memo, i + 1, j) + helper(memo, i, j + 1) : memo[i][j];
        //Restore Current Data
    }
}

测试样例

LeetCode_62-4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值