doc2vec的基于新文本内容的增量训练方案

该博客介绍了在线使用doc2vec时如何进行文本内容的增量训练,以保持模型的新鲜度,适用于实时的文本相似度计算和情感分析任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在线上使用doc2vec训练时,经常需要实时的更新模型,训练新的语料和句向量,来进行接下来的文本相似度、情感分析等工作。下面的代码简单概括了doc2vec的增量训练方案。
# @author:DerrickOzil
# date: 2017-09-04
# -*- coding: utf-8 -*-
import sys 
import gensim
import os
from gensim.models.doc2vec import Doc2Vec
reload(sys)
sys.setdefaultencoding('utf-8')

TaggededDocument = gensim.models.doc2vec.TaggedDocument

#获取语料集合
def get_datasest(filename,cate,x_train=[]):
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值