jam55
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、时间序列的强化学习与多变量预测
本文探讨了强化学习在时间序列中的应用,并深入分析了多变量时间序列预测的方法与挑战。文章介绍了多种深度学习模型,包括DeepAR、N-BEATS、LSTM、Transformer和TCN,在能源需求预测中的实践步骤和性能对比。此外,还总结了多变量预测的整体流程,并展望了未来发展方向。通过实验评估,为读者提供了针对不同场景选择合适模型的参考依据。原创 2025-07-16 05:02:46 · 33 阅读 · 0 评论 -
22、时间序列强化学习:算法与实践
本文全面介绍了强化学习在时间序列中的应用,涵盖多臂老虎机算法、Q学习和深度Q学习的核心原理与实践。通过Python代码示例展示了如何在推荐系统中使用多臂老虎机进行用户笑话推荐,并利用深度Q学习实现加密货币交易策略。文章还分析了技术指标的作用、交易环境的构建以及训练过程中的关键参数,总结了不同算法的特点与适用场景,并展望了未来的发展方向。原创 2025-07-15 09:57:42 · 33 阅读 · 0 评论 -
21、深度学习与强化学习在时间序列分析中的应用
本文详细探讨了深度学习与强化学习在时间序列分析中的应用。首先介绍了全连接前馈网络、循环神经网络(RNN/LSTM)以及扩张因果卷积神经网络在时间序列预测中的实现方法和优缺点,接着阐述了强化学习的基本原理及其在时间序列问题中的建模思路,并给出了多臂老虎机算法和深度Q学习的具体实现示例。最后对不同方法的特点进行了总结,并展望了未来研究方向。原创 2025-07-14 13:46:58 · 21 阅读 · 0 评论 -
20、时间序列的深度学习方法与实践
本文探讨了时间序列深度学习的多种方法与实践,涵盖了流行的算法和模型,如自编码器、InceptionTime、DeepAR、N-BEATS、循环神经网络(RNNs)、卷积神经网络(ConvNets)、变压器架构以及Informer。文章通过飞机乘客预测案例展示了全连接网络模型的逐步改进过程,并对不同模型在时间序列预测中的表现进行了对比分析。总结指出,时间序列深度学习技术不断发展,未来将在效率、准确性及可解释性方面进一步提升。原创 2025-07-13 11:27:43 · 17 阅读 · 0 评论 -
19、时间序列的概率模型与深度学习方法
本文介绍了时间序列分析中的概率模型和深度学习方法。以贝叶斯结构时间序列(BSTS)为例,探讨了因果影响分析在金融预测中的应用,并详细展示了使用`tfcausalimpact`库进行建模的步骤。同时,文章还回顾了深度学习的发展历程及其在时间序列任务中的核心算法,包括自编码器、InceptionTime、DeepAR、N-BEATS、RNN、LSTM、卷积神经网络和Transformer等。通过代码示例展示了全连接网络、循环神经网络和扩张因果卷积网络的具体实现。最后总结了当前深度学习在时间序列领域的挑战与未来发原创 2025-07-12 09:02:52 · 24 阅读 · 0 评论 -
18、时间序列预测的多种模型方法
本文详细介绍了多种时间序列预测模型,包括马尔可夫模型、模糊建模和贝叶斯结构时间序列模型(BSTS),并结合Python代码展示了这些模型的实际应用。涵盖了理论背景、模型特点及具体实践步骤,适用于不同场景下的时间序列分析与预测需求。原创 2025-07-11 13:21:13 · 33 阅读 · 0 评论 -
16、时间序列的在线学习:原理、算法与漂移处理
本文探讨了时间序列的在线学习原理、算法及数据漂移处理方法。对比了在线学习与离线学习的差异,介绍了流式数据场景下的监督学习表述以及评估方法,如 Holdout 和 Prequential。文章还详细分析了增量学习算法、漂移类型及其对模型的影响,并讨论了多种漂移检测方法,包括统计过程控制、顺序分析和基于窗口的比较方法。此外,提供了部分在线学习与漂移处理算法的流程图,帮助读者理解其工作机制。原创 2025-07-09 09:44:16 · 15 阅读 · 0 评论 -
15、时间序列机器学习:从环境搭建到多模型实践
本博客从虚拟环境搭建开始,介绍了多种时间序列机器学习模型的实践方法。内容涵盖使用kNN结合动态时间规整(DTW)进行机器人故障分类、利用Silverkite算法对COVID病例进行预测、使用XGBoost梯度提升模型进行时间序列预测,以及基于Kats库的集成模型应用。同时讨论了在线学习的基本概念及其在时间序列分析中的重要性。通过对比不同模型的优缺点和适用场景,为读者提供了一个全面的时间序列机器学习实践指南,并展望了未来的研究方向和发展趋势。原创 2025-07-08 13:42:24 · 15 阅读 · 0 评论 -
14、时间序列分析:无监督方法与机器学习模型
本文探讨了时间序列分析中的无监督方法和机器学习模型,涵盖异常检测、变化点检测、k近邻与动态时间规整、Silverkite以及梯度提升等多种技术。通过使用如`alibi-detect`、`ruptures`、`tslearn`和`Greykite`等Python库,展示了如何实现相关算法并应用于实际场景。此外,还介绍了时间序列的验证方法、虚拟环境配置及具体代码示例,旨在帮助读者更好地理解和应用时间序列分析技术。原创 2025-07-07 09:26:27 · 15 阅读 · 0 评论 -
13、时间序列的无监督学习方法
本博客深入探讨了时间序列数据的无监督学习方法,重点介绍了异常检测、变化点检测和聚类技术。内容涵盖了各类算法的基本原理、实际应用场景及挑战,并提供了基于Python的实现示例,帮助读者更好地理解和应用这些方法。原创 2025-07-06 14:29:56 · 20 阅读 · 0 评论 -
12、移动平均和自回归模型的时间序列预测
本文介绍了多种经典的时间序列预测方法,包括移动平均、自回归模型(AR)、指数平滑方法(如简单指数平滑、Theta方法和Holtz-Winters方法)、ARCH和GARCH模型以及向量自回归模型(VAR)。同时提供了基于Python的statsmodels等库进行建模和预测的实践步骤,并讨论了模型选择标准(如AIC和BIC)、平稳性检验、参数估计与误差分析等内容。最后总结了完整的时间序列预测流程及实用建议。原创 2025-07-05 14:57:30 · 27 阅读 · 0 评论 -
11、时间序列机器学习与经典模型入门
本文介绍了时间序列分析在经济学、气象学等领域的应用,探讨了机器学习为时间序列分析提供的强大工具。内容涵盖经典的时间序列模型如ARIMA、MA、AR、ARMA、SARIMA等的原理及实际应用案例,并比较了不同模型的优缺点。此外,还提到了Python中的时间序列库如sktime、Pyts、Darts等的使用方法和功能。文章最后展望了深度学习在时间序列分析中的发展趋势以及融合多种模型的方法。原创 2025-07-04 10:17:40 · 21 阅读 · 0 评论 -
10、时间序列机器学习入门
本文详细介绍了时间序列机器学习的基础概念、相似性度量方法以及常用的分类算法。内容涵盖单变量与多变量时间序列的处理,基于距离、符号、形状特征等不同类型的算法,并对ROCKET、HIVE-COTE等高性能模型进行了深入分析。同时结合实际应用场景,探讨了不同算法在语音识别、股票预测等领域的使用方式,并展望了未来发展趋势。通过对比各类算法的准确性与时间复杂度,帮助读者根据具体需求选择合适的时间序列机器学习方法。原创 2025-07-03 16:11:15 · 10 阅读 · 0 评论 -
9、时间序列机器学习中的交叉验证与误差指标
本文探讨了时间序列机器学习中的交叉验证方法与误差指标的应用。文章详细介绍了交叉验证的基本原则,以及在回归和分类任务中常用的误差指标,并分析了不同指标的适用场景。此外,还提供了一个选择误差指标的流程,以帮助读者根据业务目标、数据特点和模型类型确定最适合的指标。通过合理使用这些方法,可以提升时间序列预测的准确性和可靠性。原创 2025-07-02 15:28:18 · 23 阅读 · 0 评论 -
8、时间序列机器学习入门
本博客全面介绍了时间序列机器学习的基础知识与实践方法,涵盖ROCKET变换和Shapelets特征提取技术、数据预处理的重要性以及监督学习、无监督学习和强化学习的基本概念。此外,还讨论了机器学习的发展历史、工作流程、交叉验证方法、误差评估指标及时间序列的比较方法,并详细解析了决策树、支持向量机和神经网络等主流算法的应用场景与特点。适合初学者入门和深入理解时间序列分析与建模的核心思想。原创 2025-07-01 12:34:36 · 17 阅读 · 0 评论 -
7、时间序列预处理:技术与实践
本文详细介绍了时间序列数据的预处理技术与实践,包括ROCKET方法、形状特征(Shapelets)提取、对数和幂变换、缺失值插补、节假日和日期特征提取、以及自动化特征提取工具如Featuretools和tsfresh的应用。同时,还总结了不同预处理方法的优缺点,并通过实例代码展示了如何实现这些技术。最后,文章提供了实际应用中的注意事项以及未来的研究方向,为时间序列分析和机器学习模型的优化提供了全面的参考。原创 2025-06-30 16:03:44 · 13 阅读 · 0 评论 -
6、时间序列分析与预处理:Python 实战指南
本博客深入探讨了时间序列分析与预处理的关键技术,包括时间序列分析基础、预处理的重要性、特征变换方法、插补技术、特征工程实践以及日期和时间相关特征的处理。通过Python实战指南,读者将了解如何提高时间序列数据的质量,并有效提升机器学习模型的性能。内容涵盖了常用库、可视化方法、数据变换技巧以及实际应用流程和注意事项,适合希望掌握时间序列分析与预处理的从业者和研究者参考学习。原创 2025-06-29 15:33:53 · 11 阅读 · 0 评论 -
5、Python 时间序列分析全面指南
本文是一篇关于Python时间序列分析的全面指南,详细介绍了时间序列的基础操作、变量理解与分析、变量间关系挖掘、趋势和季节性识别等内容。通过空气污染数据集和NASA温度数据集等多个实例,展示了如何使用Python进行数据分析与可视化,并提供了完整的代码示例。此外,还总结了时间序列分析的通用流程以及在实际场景中的应用,适合初学者和进阶者学习参考。原创 2025-06-28 13:26:10 · 16 阅读 · 0 评论 -
4、Python 时间序列分析入门与实践
本文详细介绍了使用 Python 进行时间序列分析的基础知识与实践方法。内容涵盖 Python 常用库如 pandas 和 NumPy 的使用、时间序列数据的处理技巧、变量理解与关系揭示、趋势与季节性识别,以及实际应用案例。通过具体示例和代码演示,帮助读者掌握从数据导入、清洗、分析到预测的完整流程,适合初学者和希望提升时间序列分析能力的开发者阅读。原创 2025-06-27 13:43:10 · 13 阅读 · 0 评论 -
3、时间序列分析:从理论到Python实践
本文全面介绍了时间序列分析的相关知识,涵盖了科学领域的重要发展,如优化算法、经济学可视化、气象学、医学和应用统计学等内容。同时详细解析了Python在时间序列分析中的优势,包括多种机器学习库和工具的使用,以及Jupyter环境的应用。文章还通过实际案例展示了时间序列分析在天气预报、疾病诊断和经济预测等领域的广泛应用,并提供了基于Python的具体实践步骤,帮助读者更好地掌握时间序列建模与预测技术。原创 2025-06-26 14:24:22 · 16 阅读 · 0 评论 -
2、时间序列分析:从基础特征到多领域发展
本文全面介绍了时间序列分析的基本特征,包括趋势、季节性和平稳性等核心概念,并探讨了其在多个领域的发展和应用。从人口统计学到遗传学,再到天文学,时间序列分析的历史和跨学科影响被详细阐述。同时,文章展示了时间序列分析在金融、医疗和气象领域的实际案例,并展望了未来与大数据和机器学习的融合趋势。最后,提供了学习时间序列分析的基础知识、工具和实践建议。原创 2025-06-25 12:32:08 · 15 阅读 · 0 评论 -
1、利用Python进行时间序列机器学习入门
本文介绍了时间序列的基本概念、研究历史以及如何使用Python进行时间序列分析和机器学习。涵盖了时间序列的定义、多学科的研究历史、Python常用库及其安装方法、时间序列分析的主要步骤、预处理技术,以及常见的机器学习方法和评估指标。适合初学者入门时间序列分析与预测建模。原创 2025-06-24 09:36:21 · 11 阅读 · 0 评论