Lintcode20 Dices Sum solution 题解

本文探讨了通过动态规划算法解决扔n个骰子时所有可能的和S及其相应概率的问题。采用dfs方法虽直观但效率低,最终选择了dp方法实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

Throw n dices, the sum of the dices' faces is S. Given n, find the all possible value of S along with its probability.

Notice:You do not care about the accuracy of the result, we will help you to output results.

扔 n 个骰子,向上面的数字之和为 S。给定 Given n,请列出所有可能的 S 值及其相应的概率。

注意:你不用关注答案的准确性,我们会帮你输出答案

【题目链接】

http://www.lintcode.com/en/problem/dices-sum/

【题目解析】

这题用dfs做感觉更加直观,但是过不了time cost。换成dp的方法我是这么想的:

用dp[i][j]表示有i + 1个骰子的情况下,掷到的和为j的次数。那么intialize这个dp[0][j], j = 1...6的值都为1,然后从i = 1开始做循环。i个骰子和i + 1个骰子的差别就是1个骰子(废话),所以再用一个k = 1...6进行遍历,那么i + 1个骰子掷到j + k的次数就是原来dp[i][j + k]的次数加上dp[i - 1][j]。

这样我们就求得了n个骰子的情况下,每个S出现的次数dp[n - 1][j], j = n...6 * n。那么概率就是每个dp[n - 1][j]除以出现的总次数sum(dp[n - 1][j]).

这里要注意dp的值可能很大,所以要用到long long,否则在有些test case(e.g., n = 15)的情况下,会出现负数答案。

【答案链接】

http://www.jiuzhang.com/solution/dices-sum/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值