阿尔茨海默病影像生物标志物的研究进展
1. 边界位移积分(BSI)方法
在阿尔茨海默病(AD)领域,为了研究大脑宏观结构随时间的变化并量化萎缩情况,边界位移积分方法及其局部变体,如用于脑室扩大研究的VBSI或聚焦于海马结构的H - BSI,目前被广泛应用。这些测量方法也是阿尔茨海默病神经影像学倡议(REF)处理流程的核心部分。
边界位移积分框架包含两个关键步骤:
- 图像配准 :将两次扫描的图像配准到一个共同的空间。
- 积分计算 :基于组织损失时强度单调变化的假设(例如从灰质到脑脊液),对感兴趣对象边界区域两次扫描的强度变化进行积分,以此测量实际的体积损失。
从多中心和协议随时间变化的角度来看,对原始方法进行改进,采用基于组织的强度归一化来调整窗口参数,已被证明可以在假设试验中减少所需的样本量。最近,BSI的广义版本通过在两个时间点的感兴趣分割区域定义中纳入概率分割,进一步改进了这些结果。
2. 影像生物标志物分析的未来方向
2.1 社区倡议
- 跨领域合作 :影像生物标志物提取的方法学发展是为了满足特定临床领域实践社区的需求。然而,提出的解决方案很少局限于给定领域,可成功应用于其他遇到类似问题和要求的临床挑战。例如,为确保早产儿对脑室扩大的鲁棒性而开发的解决方案,也可用于解释老年人群的萎缩和相关脑室扩大;肿瘤学中PET挑战的知识可用于促进AD中PET生物标志物的开发。而且,来自其他临床研究领域的灵感不仅限于影像分析方法学,还可扩展到使这些方法在临床实践中具有可转化性的