数据验证与模型比较的Python实现

41、数据验证。首先,定义一个简单的验证规则,例如“这些值必须是 3 或 5 的倍数”。这意味着它们必须能转换为整数值,并且该整数对 3 取模为 0 或者对 5 取模为 0。其次,编写一个验证函数,该函数返回一个 Right 或 Left 对象。将验证函数应用于一个值序列,并保存得到的 Either 对象序列。

说明了数据验证的步骤:

  1. 定义验证规则,如值必须是 3 或 5 的倍数,即能转换为整数且该整数对 3 取模为 0 或者对 5 取模为 0;
  2. 编写返回 Right Left 对象的验证函数;
  3. 将验证函数应用于值序列并保存得到的 Either 对象序列。

同时提到可使用 Either 对象的 .either() 方法处理 Left Right 实例。

42、多个模型。每个模型根据样本中的观测值 $s_o$ 计算期望值 $e$:$e = 0.7412 × s_o$;$e = 0.9 × s_o - 90$;$e = 0.7724 × s_o^{1.0134}$。首先,将这些模型实现为柯里化函数。然后,使用通用的 PyMonad 组合或管道创建一个比较函数,用其中一个模型计算预测值,并将预测值与观测值进行比较。创建柯里化模型函数,以及用于比较模型预测结果与实际结果的组合或管道。

要实现这些需求,可按以下步骤操作:

  1. 实现柯里化模型函数:
    - 对于 $e = 0.7412 × s_o$,可以使用 Python 的 pymonad.tools.curry 装饰器创建柯里化函数。
    - 对于 $e = 0.9 × s_o - 90$ 同理。
    - 对于 $e = 0.7724 × s_o^{1.0134}$ 也使用 curry 装饰器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值