TransUNet:当Transformer遇上UNet会擦出怎样的火花?(医学图像分割新思路)

前言(为什么你还在用传统UNet?)

各位搞CV的小伙伴们注意了(敲黑板)!今天要给大家介绍的这个网络结构,绝对能让你的分割模型性能原地起飞!!!传统UNet在医学图像处理领域称霸了这么多年,是时候来点新玩法了——TransUNet这个将Transformer和UNet巧妙融合的网络,在胰腺分割任务上直接把Dice系数干到了87.6%!(比原版UNet高了整整9.8个百分点)

一、TransUNet结构大拆解(Transformer的正确打开姿势)

1.1 网络整体架构(这个设计太妙了!)

整个网络就像个三明治结构(见下方示意图),最底层是CNN特征提取器,中间夹着Transformer层,最上层是UNet风格的解码器。这种设计既保留了CNN的局部特征捕捉能力,又通过Transformer获得了全局上下文信息。

重点来了(必考知识点):

  • 输入图像先被切成16x16的patch(跟ViT的处理方式类似)
  • 使用ResNet-50的前4个stage作为编码器(别问为什么不用VGG,问就是残差连接真香!)
  • 关键创新点:在CNN特征图上叠加位置编码后送入Transformer(这个操作让模型既懂空间位置又懂语义信息)

1.2 Transformer编码器详解(不是简单的堆叠!)

这里的Transformer层可不是随便堆的(新手最容易踩的坑)!!!作者采用了12层的Transformer blocks,每层包含:

  • Multi-Head Attention(8个注意力头)
  • MLP扩展比为4的前馈网络
  • 层归一化(LayerNorm)和残差连接

注意(超级重要):在医学图像中,病灶区域往往只占很小部分,所以这里的注意力机制要重点关注局部细节和全局位置的关系!

二、手把手实现TransUNet(PyTorch实战篇)

2.1 环境准备(别在版本问题上翻车!)

# 必备的三件套
import torch
import torch.nn as nn
from einops import rearrange  # 张量操作神器!

# 版本建议(血泪教训):
# PyTorch 1.7+ / torchvision 0.8+ / timm 0.4.5+

2.2 核心代码实现(逐行解析)

class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4.):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.attn = nn.MultiheadAttention(dim, num_heads)
        self.norm2 = nn.LayerNorm(dim)
        self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值