【写给小白的LLM】AI大模型中的 token 到底是个什么?

相信你只要了解过大模型,就听过token这个词儿,大家在用ChatGPT的API时,是按token计费的。例如,你提问消耗了 100 token,ChatGPT根据你的输入,回答了200token,那么一共消费的 token 数就是 300。

图片

有时候看一些偏技术的文章,一些模型后面带着8k、32k,甚至100k,这也是指模型能处理的蕞大token长度。

既然token在大模型领域这么高频出现,我们不禁要问:

什么是token?

它是怎么计算的?

一个token是指一个字吗?

中文和英文的token是一样的吗?


什么是Token?

大模型世界的最小积木——Token

Token =AI眼中的"文字乐高块",中文名称可译为“词元”,是AI理解文本的最小单位,就像人类阅读时自动拆分的“信息颗粒”,AI不是按字而是按token处理文本。就像乐高小块能拼出无限可能,大模型把文本拆成Token,再重组出智能回答~

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

图片

大模型中的"token"是指文本的蕞小处理单位在大模型处理中,将文本划分为token是对文本进行分析和处理的基本步骤之一。

通常情况下,一个token可以是一个单词、一个标点符号、一个数字,或者是其他更小的文本单元,如子词或字符。

以下是不同token切分类型的介绍:

单词级token: 即token是按照单词进行划分的。一个句子中的每个单词通常都会成为一个独立的token。例如,在句子"我是智泊AI"中,“我”、"是”、"智泊AI"分别是三个单词级token.

图片

标点符号级token: 除了单词,标点符号通常也作为独立的token存在。这是因为标点符号在语义和语法上都具有重要的作用。

例如,在句子"token好理解吗?“中,除了"token好理解吗"作为一个整体的token外:蕞后的问号”?"也是一个独立的token。

子词级token: 为了更好地处理复杂的语言情况,有时候将单词进一步划分为子词级的token。例如,单词"unhappiness"可以被划分为子词级token"un-"、、"happiness’

更复杂一点的,现在大模型比较流行的子词级token还有字节对编码(BPE),这也是ChatGPT的guan方采用的token编码方法它是通过合并出现频繁的子词对来实现的。

字符级token: 在某些情况下,特别是在字符级别的处理任务中,文本会被划分为字符级token。这样做可以处理字符级别的特征和模式。例如,在句子"Hello!“中,“H”、“e”““、” ”“o"和”!"分别是六个字符级token。

图片

通过对文本做成一个一个的token,LLM模型能够更好地理解和处理语言,从而实现任务如文本生成、机器翻译、文本分类等。

因此,现在主流的大模型都会自带一个tokenizer,也就是自动将输入文本解析成一个一个的token,然后做编码(就是查字典转换成数字),作为大模型真正的“输入

蕞后,那么在ChatGPT中,一个token到底是多长?下面是一些有用的经验法则,可以帮助理解token的实际长度:

对于英文文本,1个token大约是4个字符或0.75个单词。通常来说,也就是1000个Token约等于750个英文单词。

对于中文,1000个Token通常等于400~500个汉字。

但是…!!!

Token ≠ 汉字/单词

中文: 1个token≈1-2个汉字(比如"人工智能"会被拆成2-3个token)

英文:1个token≈0.75个单词(比如"unbelievable"可能会被拆分成"un+believetable")

图片

空格也算token!大家输入时千万别乱敲空格哦~

为什么重要?

算力成本: 每次对话消耗token量=你的"算力账单"(GPT-4每千token约¥0.3)

内容长度: ChatGPT-3.5最多支持4096 tokens(约3000汉字)

回答质量: 超出限制会"失忆",重要信息要前置!

技术原理3层拆解

分词算法: 用unigram/BPE算法找最佳拆分组合

分词器(tokenizer)黑科技:

英文: 按词根拆分(如“unbelievable"一[“un”,“##belie”,“##able”])

中文: 混合策略("人工智能"可能拆为[“人”,“工”,“智能”])

Emoii/符号: 每个表情算1个token

图片

词表映射: 每个token对应唯一ID(比如"猫"→3827,🐱→12850)

向量转换: ID转换成768维数学向量,模型才能真正“理解”

概率预测: 根据前文猜下一个token

Tokens的作用:

1⃣ 输入限制:AI模型对每次处理的Token数量有限制(比如GPT-4最多支持32K Tokens),超过限制的部分会被截断。

2⃣ 计费标准:很多AI平台按Tokens数量收费,比如输入和输出的Tokens总和决定了使用成本。

图片

3⃣ 模型理解:模型通过Tokens来“理解”文本,Token化方式直接影响模型的性能和效果。

日常应用Tips

优化prompt: 删减冗余词=省token空间

控制输出: 设置max tokens参数

处理长文本: 用"继续"触发连贯生成

现在你明白了吗?Tokens是AI大模型的核心概念之一,了解它有助于更好地使用AI工具哦!

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值