Beam Search是什么?一文讲清AI大模型知识点Beam Search(束搜索)

01 什么是“Beam Search”?

大模型(如 ChatGPT、DeepSeek)在生成回答时,并不是一次性输出整段文字,而是一个词一个词地“逐步吐出”(更准确地说,是一个个 token)。

图片

每一步,模型都会计算所有候选词的概率,例如:

“我” → 概率 0.6

“你”→>概率 0.3

“它→>概率 0.1

接着,模型会根据设定的 Decode 策略,从中选择一个词输出。这个选择过程被称为: Decoding,而 BeamSearch(束搜索)就是其中一种常用的 Decode 策略。

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

图片

02 咱先了解一下“Greedy Search”

简单粗暴的一种 Decode 策略: 每一步都选概率排名 Top-1的token,一条路走到黑。

举个例子:

第1步:

候选 token: “我”(0.6)、“你”(0.3)、“它”(0.1)→选“我”

第2步:

基于“我”继续推理,生成候选词 token: “喜欢”(0.6)“讨厌”(0.4)→ 选“喜欢”

生成结果: “我喜欢”

缺点很明显:

有点“目光短浅”: 只盯当下,不考虑整体句子可能更好的组合。

生成结果单一、容易重复,不太聪明。

图片

03 “Beam Search”的原理解析

核心思想: 不把鸡蛋放一个篮子里,每一步保留多条推理路径。

工作流程如下:

1.设置“束宽”B(Beam Width): 表示每一步保留的候选推理路径数量,比如 B=2,就保留概率 Top-2 的两个组合。

2.按概率累积打分: 使用对数概率(logP)累加评分,避免数值太小无法比较。

3.逐步扩展 & 筛选: 每一轮都从上一步的每个候选里继续“展开”,再从所有新组合中筛出 Top-B 个组合。

图片

举个例子(束宽 B=2):

第1 步: 生成起始词

-“我”(0.5)

-“你”(0.3)

淘汰“它”(0.2),保留“我”和“你”作为候选。

第2步: 继续扩展

-“我喜欢”→ log(0.5)+ log(0.6)= -0.52

-“我讨厌”→ log(0.5)+ log(0.4)= -0.70

-“你去”→log(0.3)+log(0.7)=-0.68

-“你来”→ log(0.3)+ log(0.3)= -1.05

保留概率 Top-2 的两个组合 →“我喜欢”、“你去”

图片

第 3 步: 继续对“我喜欢”和“你去”进行扩展…

结果可能生成: “我喜欢吃水果”or“你去哪里啦~”

04 “Beam Search”的优缺点

优点:

相比贪心搜索,Beam Search会保留多条候选路径,通常能生成更通顺、更合理的句子。

束宽可控,能灵活平衡性能和效果。

缺点:

更耗计算资源,束宽 B越大,推理路径越多、越烧显卡。

缺乏随机性,容易生成“中规中矩”的保守回答。

有时会陷入“循环输出”。

图片

小彩蛋

像 ChatGPT、Deepseek 这些模型在生成内容时,不会只用Beam Search,还会结合一些“随机采样”(Sampling)技巧:

比如:

-温度调节(Temperature)

-Top-k 或 Top-p 截断采样

这些方法可以让 AI“偶尔胡思乱想”一下,跳出框框,输出更有趣、更有“人味儿”的回答~

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值