目录
1.2信号量:一把锁配多把钥匙 from multiprocessing import Semaphore
二.事件 from multiprocessing import Event
三.进程间通信——队列(multiprocessing.Queue)
一.锁
我们实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。
当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。
进程锁: 也是为了控制同一操作系统中多个进程访问一个共享资源,只是因为程序的独立性,各个进程是无法控制其他进程对资源的访问的,但是可以使用本地系统的信号量控制(操作系统基本知识)。
os.getpid () Python中的method用于获取当前进程的进程ID
1.1加锁
第一种没有加锁:
import time,os
from multiprocessing import Process,Lock
def fun(lock,n):
# lock.acquire()
print("我是子进程:%s 进程🆔id为:%s"%(n,os.getpid()))
time.sleep(2)
print("回头科科:%s 进程🆔id为:%s"%(n,os.getpid()))
# lock.release()
if __name__ == "__main__":
lock = Lock()
for i in range(5):
p = Process(target=fun,args=(lock,i,))
p.start()
print("我是主进程")
第二种加锁:
代码:
import time,os
from multiprocessing import Process,Lock
def fun(lock,n):
lock.acquire()
print("我是子进程:%s 进程🆔id为:%s"%(n,os.getpid()))
time.sleep(2)
print("回头科科:%s 进程🆔id为:%s"%(n,os.getpid()))
lock.release()
if __name__ == "__main__":
lock = Lock()
for i in range(5):
p = Process(target=fun,args=(lock,i,))
p.start()
print("我是主进程")
使用加锁的形式实现了顺序的执行
1.2信号量:一把锁配多把钥匙 from multiprocessing import Semaphore
代码:
1.
from multiprocessing import Semaphore
l = Semaphore(3)
l.acquire()
print(1)
l.acquire()
print(2)
l.acquire()
print(3)
# l.release()
l.acquire()
print(4)
l.release()
2.
from multiprocessing import Semaphore
l = Semaphore(3)
l.acquire()
print(1)
l.acquire()
print(2)
l.acquire()
print(3)
l.release()
print(4)
结果截然不同:
第一种:
第二种:
这就是锁的操作没有解锁就执行不了下面的内容
而信号量的参数代表了几个锁
所以有人肯定会问:
下面这种情况:
from multiprocessing import Semaphore
l = Semaphore(3)
l.acquire()
print(1)
l.acquire()
print(2)
l.acquire()
print(3)
print(4)
l.release()
这样大家仔细看看是不是给两个输出上了锁!!!
二.事件 from multiprocessing import Event
Queue([maxsize])
#创建共享的进程队列。
#参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
#底层队列使用管道和锁定实现。
from multiprocessing import Event
e =Event()
print(e.is_set())
e.set()
e.clear()
e.set()
e.wait()
print("jjj")
- 事件通过is_set()的bool值,去标识e.wait()的阻塞状态
- 当is_set()的bool值为False时,e.wait()是阻塞状态
- 当is_set()的bool值为True时,e.wait()是非阻塞状态
- 当使用set()时,是把is_set的bool值变为True
- 当使用clear()时,是把is_set的bool值变为 False
加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理
因此我们最好找寻一种解决方案能够兼顾:
1、效率高(多个进程共享一块内存的数据)
2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
三.进程间通信——队列(multiprocessing.Queue)
特点: 数据先进先出(First In First Out) 简称 FIFO
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
Queue([maxsize])
#创建共享的进程队列。
#参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
#底层队列使用管道和锁定实现。
3.1方法介绍
1.Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
2.Queue的实例q具有以下方法:
1.q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。
2.q.get_nowait( )
同q.get(False)方法。
3.q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为
True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。
4.q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。
5.q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠
的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。
6.q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。.
q.get_nowait ():直接使用get (),如果此时队列中没有元素,那么会阻塞等待,使用get_nowait ()后,如果队列中没有元素,那么会报错 q.put_nowait ():直接使用put (),如果此时队列满了,那么会阻塞等待,使用put_nowait ()后,如果队列已经满了,那么会报错
from multiprocessing import Queue
q = Queue(3)
def fun():
return 1
q.put(fun)
a=q.get(fun) # 阻塞等待获取数据,如果有数据直接获取,
# 如果没有数据,阻塞等待
print(a())
q.put(fun())
q.put(fun())
q.put(fun())
print(q.qsize()) #返回队列中目前项目的正确数量
# q.put(fun) # 阻塞,如果可以继续往队列中放数据
# # ,就直接放,不能放就阻塞
# q.get_nowait() # 队列满了并且超出不报错
# q.put_nowait(fun) # 不阻塞,如果可以继续往队列
# # 中放数据,就直接放,不能放就报错
b= q.get(fun)
print(b)
3.2队列用法
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''
from multiprocessing import Queue
q=Queue(3)
#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3) # 如果队列已经满了,程序就会停在这里,
# 等待数据被别人取走,再将数据放入队列。 1
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,
# 但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这
# 样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了')
# 因此,我们再放入数据之前,可以先看一下队列的状态,
# 如果已经满了,
# 就不继续put了。
print(q.full()) #满了
print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait() # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了')
print(q.empty()) #空了
上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。
3.3子进程发送数据给父进程
import time
from multiprocessing import Process,Queue
def fun(q):
# 调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据
q.put([time.asctime(),'from SX','hello'])
if __name__ == '__main__':
q =Queue() #创建一个Queue对象
p = Process(target=fun,args=(q,))#创建一个进程
p.start()
print(q.get())
p.join()