进程之间的数据共享

本文探讨了进程间通信的重要性,建议采用基于消息队列的方式减少对锁的依赖,并提倡使用进程安全的工具来避免加锁问题。未来计划利用数据库解决进程间的数据共享挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展望未来,基于消息传递的并发编程是大势所趋
即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。
这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。
但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。
以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

pic

 

from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock: #不加锁而操作共享的数据,肯定会出现数据错乱
        # Python Threading中的Lock模块有
        # acquire()和release()两种方法,这两种方法与
        # with语句的搭配相当于,进入with语句块时候会
        # 先执行acquire()方法,
        # 语句块结束后会执行release方法。
        d['count']-=1
if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
            for p in p_l:
                p.join()
            print(dic)

with ...as用法

python with as的用法 - 滴水瓦 - 博客园

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值