进程池和multiprocess.Pool模块

本文介绍了Python的进程池概念及其使用,包括如何创建进程池、同步与异步调用方法`apply`和`apply_async`,以及回调函数的应用。进程池允许固定数量的进程处理任务,提高了程序效率并简化了进程管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么要有进程池?进程池的概念。
在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来
了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

一个池子,里面有固定数量的进程。这些进程一直处于待命状态,一旦有任务来,马上就有进程去处理
进程池还会帮助程序员去管理池中的进程。

一.创建代码

Pool([numprocess [,initializer [, initargs]]]):创建进程池 

参数:

  1. numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
  2.  initializer:是每个工作进程启动时要执行的可调用对象,默认为None
  3. initargs:是要传给initializer的参数组

二.方法

  • p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。.同步 
    • '''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用 p.apply()函数或者使用p.apply_async()'''
  • p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。 异步 
    • '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。 callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
  • p.close():关闭进程池,防止进一步操作。
    • 如果所有操作持续挂起,它们将在工作进程终止前完成 
  • P.jion():等待所有工作进程退出。
    • 此方法只能在close()或teminate()之后调用 

三.进程池的同步调用  p.apply(func [, args [, kwargs]])

import os
from multiprocessing import Pool
def work(n):
    print('%s run'%os.getpid())
    return n**2
if __name__ == "__main__":
    p = Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_1 = []
    for i in range(10):
        ree = p.apply(work,args=(i,))
        # 同步调用,直到本次任务执行完毕拿到res,等待任务work执
        # 行的过程中可能有阻塞也可能没有阻塞
        # 但不管该任务是否存在阻塞,同步调用都会在原地等着
        res_1.append(ree)
    for i in res_1:
        print(i)

结果:

 

四. 进程池的异步调用 p.apply_async(func [, args [, kwargs]])

代码:

import os
from multiprocessing import Pool
def work(n):
    print('%s run'%os.getpid())
    return n**2
if __name__ == '__main__':
    p = Pool(3)#进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_1 = []
    for i in range(10):
        res = p.apply_async(work,args=(i,))
        # 异步运行,根据进程池中有的进程数,每次最多3个子
        #进程在异步执行
        # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务 
        # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束 
        # 而是执行完一个就释放一个进程,这个进程就去接收新的任务
        res_1.append(res)
    p.close()
    p.join()
    for res in res_1:
        print(res.get())   #使用get来获取apply_aync的结果,如果是apply,则没有get方法,
        #  因为apply是同步执行,立刻获取结果,也根本无需get 

结果:

同步异步对比:

        同步:在一个池工作进程中执行func(*args,**kwargs),然后返回结果

        异步:此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数即对象

五. 回调函数

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值