为什么要有进程池?进程池的概念。
在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?
在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来
了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。
一个池子,里面有固定数量的进程。这些进程一直处于待命状态,一旦有任务来,马上就有进程去处理
进程池还会帮助程序员去管理池中的进程。
一.创建代码
Pool([numprocess [,initializer [, initargs]]]):创建进程池
参数:
- numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
- initializer:是每个工作进程启动时要执行的可调用对象,默认为None
- initargs:是要传给initializer的参数组
二.方法
- p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。.同步
- '''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用 p.apply()函数或者使用p.apply_async()'''
- p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。 异步
- '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。 callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
- p.close():关闭进程池,防止进一步操作。
- 如果所有操作持续挂起,它们将在工作进程终止前完成
- P.jion():等待所有工作进程退出。
- 此方法只能在close()或teminate()之后调用
三.进程池的同步调用 p.apply(func [, args [, kwargs]])
import os
from multiprocessing import Pool
def work(n):
print('%s run'%os.getpid())
return n**2
if __name__ == "__main__":
p = Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_1 = []
for i in range(10):
ree = p.apply(work,args=(i,))
# 同步调用,直到本次任务执行完毕拿到res,等待任务work执
# 行的过程中可能有阻塞也可能没有阻塞
# 但不管该任务是否存在阻塞,同步调用都会在原地等着
res_1.append(ree)
for i in res_1:
print(i)
结果:
四. 进程池的异步调用 p.apply_async(func [, args [, kwargs]])
代码:
import os
from multiprocessing import Pool
def work(n):
print('%s run'%os.getpid())
return n**2
if __name__ == '__main__':
p = Pool(3)#进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_1 = []
for i in range(10):
res = p.apply_async(work,args=(i,))
# 异步运行,根据进程池中有的进程数,每次最多3个子
#进程在异步执行
# 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
# 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
# 而是执行完一个就释放一个进程,这个进程就去接收新的任务
res_1.append(res)
p.close()
p.join()
for res in res_1:
print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,
# 因为apply是同步执行,立刻获取结果,也根本无需get
结果:
同步异步对比:
同步:在一个池工作进程中执行func(*args,**kwargs),然后返回结果
异步:此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数即对象
五. 回调函数
需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。