分治法实验-寻找第k小元素

问题描述

随机生成含有n个不同元素的数组L(n≥10000),要求找出第k小的元素(k≤n),完成下面的任务:
(1)设计一个基于排序选择算法程序,编程调试正确(排序算法自己确定)。
(2)设计一个时间复杂度为O(n)的选择算法,编程调试正确。
(3)从理论上分析上述两种算法的时间复杂度,并且通过实际数据计算验证理论分析结果。
(4)写出实验报告。

问题分析

1、找出序列中的第k小元素,并将时间复杂度降低到O(n),我们首先想到的方法是利用排序,比如冒泡排序、选择排序,只排到第k小就截止,此时时间复杂度应为O(n^2 ),并不符合要求。
2、根据分治法思想,有如下思路:
对于集合A[1…n]中的元素,用其中某元素V进行划分:
A_1={a|a<V & a∈A},
A_2={a|a=V & a∈A},
A_3={a>V &a∈A}。
if |A_1 |>k ,问题归结为在A_1中找第k小元素
else if |A_1 |+|A_2 |≥k ,V就是第K小元素
else if

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值