- 博客(2572)
- 收藏
- 关注
原创 SNMP协议在设备监控中的使用
SNMP(Simple Network Management Protocol)是一个基于互联网协议族(IP)的网络管理标准,用于在IP网络中的管理节点与被管理节点之间进行通信,以实现对网络设备的远程监控和管理。SNMP具有简单、高效、易于实现和扩展性强等优点,因此在网络管理领域得到了广泛应用。本文开篇即对SNMP(简单网络管理协议)的基本概念与核心构成进行了全面阐述,紧接着深入剖析了SNMP命令在实际网络管理场景中的具体应用。
2025-06-27 11:28:35
953
原创 由 Mybatis 源码畅谈软件设计(八):从根上理解 Mybatis 二级缓存
上一篇 从根上理解 Mybatis 一级缓存 我们介绍了一级缓存。本篇则是关于二级缓存,同样地,仍然需要关注它的实现原理,以及要考虑“为什么在已经有了一级缓存的情况下还需要设计二级缓存”的问题,在以后实际业务中的缓存设计提供借鉴和参考。在上一篇帖子中的 User 和 Department 实体类依然要用,这里就不再赘述了,要启用二级缓存,需要在 Mapper.xml 文件中指定 cache 标签,如下:在 Department.xml 中的 cache 标签指定了 readOnly 属性,因为该配置相
2025-06-27 11:23:43
948
原创 三步根治前端缓存“顽疾”
我明明部署了新版本,用户为什么还在看旧页面?!” —— 这是多少前端开发者深夜加班时的灵魂拷问。问题的根源往往不是代码没上传,也不是服务器抽风,而是浏览器和服务器联手上演的一场“缓存大戏”。本文将带你化身“侦探🕵️♂️”,用三步精准定位问题,手把手教你解决页面未更新问题,让用户永远看到最新鲜的页面!•用户反馈页面功能异常,但开发者本地测试正常•浏览器反复刷新后,index.html引用的仍是旧版 JS/CSS 文件•查看网络请求,某些文件状态码显示或•:浏览器直接使用本地副本,不询问服务器•。
2025-06-27 11:21:25
441
原创 我在618主场,和3位顶尖技术博士聊了聊
期,2025全球人工智能技术大会(GAITC2025)于杭州盛大开幕,汇聚全球顶尖科学家、技术领袖及行业先锋,共同探讨人工智能技术产业化新趋势。京东零售AI Infra &大数据计算负责人张科受邀出席并在《行业大模型应用与发展》论坛发表演讲,首次深入介绍京东零售在端云一体大模型推理架构的实战经验与技术探索,并分享AI推理方向的未来发展思考。以下为张科分享实录,内容经编辑略有删减:大模型技术突飞猛进,大模型不仅是算法和算力的集合体,更是产业智能化的新底座,正在推动AI从“可用”向“好用、可控、可信”迈进。
2025-06-25 14:49:49
469
原创 加锁失效,非锁之过,加之错也
比如A、B操作员同时读取一余额为1000元的账户,A操作员为该账户增加100元,B操作员同时为该账户减去 50元,A先提交,B后提交。在应用程序设计阶段,尽量避免长时间持有数据库连接或事务,减少并发操作的可能性,利用AI代码评审或者人工提前找出可能出现并发问题的地方;合理设置锁的粒度,避免锁失效。合理设置事务隔离级别,以防止脏读、或者采用乐观锁或悲观锁来处理并发更新,合理设计查询效率,减少锁竞争。使用锁(如互斥锁、读写锁、分布式锁等)来控制资源的访问,数据获取的全部操作都需要再获取锁后才进行。
2025-06-25 14:44:10
238
转载 京东零售基于Flink的推荐系统智能数据体系 |Flink Forward Asia 峰会实录分享
京东推荐系统的数据体系极其复杂,从召回、模型到策略和效果评估,每个环节都需要强大的海量数据处理能力支撑。然而,在实际运行中,整个数据链路面临着诸多挑战:如实时与离线数据的埋点口径不一致、数仓模型存在偏差、计算口径不统一等问题,都会直接影响推荐效果的优化。更棘手的是,由于数据来源多样、体量庞大,整个推荐系统的数据质量控制和校验机制往往难以得到有效保障。京东零售技术专家张颖参与Flink Forward Asia 2024 峰会带来分享《京东零售基于 Flink 的推荐系统智能数据体系》,介绍了基于Flink构
2025-06-25 10:05:46
50
转载 GAITC2025|张科:端云一体大模型推理应用实战
自今年初大模型推理引擎国产化合作开展以来,京东零售和清华大学一起在大模型量化压缩、端-云协同推理引擎等方向联合攻坚,并提出“xLLM 端云一体大模型推理架构”,以解决推理引擎的性能优化问题、助力大模型技术在复杂电商环境的规模化落地。利用终端用户数据和反馈,云端模型持续优化并实时更新终端轻量化模型,形成闭环进化系统,提高模型在实际场景中的性能。目前该推理架构已经在内部多个场景应用,在可交互式导购、商品对比、商品总结、购物建议等环节,大幅提升了响应速度,节省了计算成本,同时还有效助力了用户的活跃度。
2025-06-24 16:47:29
23
原创 一分钟入门mcp开发
MCP 是一个开放协议,它为应用程序向 LLM 提供上下文的方式进行了标准化。就像 USB-C 为设备连接各种外设和配件提供了标准化的方式一样,MCP 为 AI 模型连接各种数据源和工具提供了标准化的接口。MCP 帮助你在 LLM 的基础上构建代理(agents)和复杂的工作流。恰好适配大模型的三种应用方式,一切都是为了方便LLM主导的技术时代。: MCP 服务器可连接的互联网上的外部系统(如通过 APIs)mcp的背后逻辑:大家只对能力开源,且大家均遵守君子协定的假设。
2025-06-23 11:03:02
286
原创 由 Mybatis 源码畅谈软件设计(八):从根上理解 Mybatis 二级缓存
二级缓存本质上是HashMap,在实现类中二级缓存是 Mapper 级别的,可以在不同SqlSession间共享特殊的 readOnly 标签,默认为 false,表示二级缓存中是被深拷贝的对象二级缓存需要在事务提交后才能生效执行 Insert、Delete、Update 语句会使当前 Mapper 下的二级缓存失效。
2025-06-23 11:01:57
812
原创 浅谈Java内省
讲内省,不得不说Java Bean,Bean在Java中是一种特殊的类,主要用于装载数据,数据会被存储在类的私有属性中,通常具有无参构造函数、可序列化、以及通过getter和setter方法来访问属性。内省是Java Beans规范的一部分,使用java.beans包中的类来实现,最常用的类是Introspector。通过内省,你可以获取一个Java Bean的属性描述符(PropertyDescriptor)和方法描述符(MethodDescriptor)
2025-06-23 10:59:53
834
转载 SNMP协议在设备监控中的使用
用于获取 SNMP 设备上的数据,它遍历设备的 SNMP 树,并返回特定对象标识符(OID)的值,通常用于查询设备的信息和状态。私有MIB:是公有MIB的必要补充,当公司自行开发私有协议或者特有功能时,可以利用私有MIB来完善SNMP接口的管理功能,同时对第三方网管软件管理存在私有协议或特有功能的设备提供支持。MIB文件一旦发布,OID就和被定义的对象绑定,不能修改。网络设备的很多数据都以MIB的树结构存储,根据数据对应的OID,我们便可以获取到网络设备的各种统计数据和配置数据,实现网络设备的监控。
2025-06-20 10:04:03
31
转载 一分钟入门mcp开发
MCP 是一个开放协议,它为应用程序向 LLM 提供上下文的方式进行了标准化。就像 USB-C 为设备连接各种外设和配件提供了标准化的方式一样,MCP 为 AI 模型连接各种数据源和工具提供了标准化的接口。MCP 帮助你在 LLM 的基础上构建代理(agents)和复杂的工作流。恰好适配大模型的三种应用方式,一切都是为了方便LLM主导的技术时代。: MCP 服务器可连接的互联网上的外部系统(如通过 APIs)mcp的背后逻辑:大家只对能力开源,且大家均遵守君子协定的假设。
2025-06-19 19:08:48
26
原创 工作中对InheritableThreadLocal使用的思考
作者:京东科技 王奕龙代码评审时,发现在线程池中使用InheritableThreadLocal上下文会使其中的线程变量失效,无法获取到预期的变量值,所以对问题进行了复盘和总结。
2025-06-13 13:27:00
598
转载 京东率先开启“3D信息流时代” 让购物更有趣
未来,京东将继续以技术驱动体验升级,持续优化3D引擎、拓展AIGC能力,并与更多品牌合作,共同探索3D信息流时代的无限可能。让商品“跃然屏上”、家电家居“直接入户”、直播间360度查看商品细节,今年京东618,在为用户提供“又好又便宜”极致体验的同时,京东XR创新团队首次将“京东立影-裸眼3D广告”、3D智能居家搭配工具“立影-美家”、“立影-3D直播”等创新3D内容产品应用于多个品类或场景,京东在行业中率先开启“3D信息流时代”,为用户带来全新体验,为品牌带来新的增长空间。“京东立影-裸眼3D广告”
2025-06-13 10:00:45
57
原创 大促数据库压力激增,如何一眼定位 SQL 执行来源?
)@Override// ...})@Overridetry {// 1. 找到 StatementHandler(SQL 执行时,StatementHandler 的实际类型为 RoutingStatementHandler)= null) {// 其中 delegate 是实际类型的 StatementHandler (静态代理模式),获取到实际的 StatementHandler。
2025-06-10 11:21:28
876
原创 JDK从8升级到21的问题集
第一步:在本地进行编译,提前识别出语法错误、版本冲突及不兼容问题。主要有以下几种场景:Base64:参照【Base64编解码改造】升级版本jsr250、jaxb-runtime、jakarta.annotation-api:参照【注解包冲突典型案例】升级版本升级版本升级版本。
2025-06-06 16:39:39
601
原创 【银河麒麟高级服务器操作系统】正式上线云主机官方镜像
为此,京东云与国产操作系统领军品牌麒麟软件达成深度合作,双方已完成银河麒麟高级服务器操作系统与京东云平台在海光、鲲鹏、Intel、AMD等多款x86、arm处理器的适配认证,基于此,京东云正式推出。京东云此次上线的银河麒麟操作系统镜像,改变了云上使用商业化操作系统授权的采购模式,只需在购买云主机时一键选择银河麒麟高级服务器操作系统镜像,即可自动完成授权绑定,真正实现“开箱即用”。,以订阅式服务模式,为企业提供更灵活、更便捷的云上国产化解决方案,目前该镜像已上线至官方镜像,并在全地域发布。
2025-06-06 16:37:51
371
原创 做「长期主义者」的技术人们
近年来,传统的深度稀疏模型已经进入瓶颈,稀疏大模型是成为新的技术升级方向,但概率预估与生成式模型的差异,以及工业级的高请求、低延迟要求,使升级充满挑战。Taro 是由京东发起的开放式跨端跨框架解决方案,支持以 Web 的开发范式来实现小程序、H5、原生 APP 的跨端统一开发,从18年开源至今,在 GitHub 已累计获得 36,000+ Stars。2、在技术工作的初期,我往往会从一个个具体的问题点切入,比如优化某个算法的性能、解决特定的技术难题等。在技术发展的浪潮中,有人辗转风口,有人深耕沉淀。
2025-06-03 16:58:08
667
原创 Taro on Harmony C-API 版本正式开源
Taro on Harmony C-API 版本经历了京东鸿蒙 APP 的实践,综合性能、生态以及开发体验来讲,毫无疑问已经成为了开发鸿蒙应用的最佳框架选型之一。当下,我们也仍然在不断完善着鸿蒙的适配方案,基于当前的 Taro on Harmony C-API 方案,我们会进行多线程的架构升级以及 React 的 C++ 化,进一步提升 Taro 在鸿蒙端侧的性能,并极大地降低应用的丢帧率,整体进展也已经处于验证和测试阶段。
2025-06-03 16:56:47
788
原创 解剖DeepSeek四把刀,一场深到源码,大到行业,细到人心的手术盛宴
在这个算力与算法疯狂博弈的时代,DeepSeek就像一剂强效兴奋剂,能让追赶者瞬间爆发,却有可能治不好核心技术的贫血症,下一个十年AI王座的归属,恐怕要看谁能再这条钢索上走出最精妙的平衡。反观OpenAi彻底闭源的API模式,DeepSeek这招即赚了口碑,又卡住了技术咽喉。第三刀:刺穿精度幻象,在数学推理测实际上,DeepSeek-R1确实追评了GPT-3,但当用医疗影像诊断任务实测时,FP8精度导致的梯度消失问题暴露无疑:例如模型可能会把0.8cm的肿瘤误判为0.1cm,这种误差在现实场景中足以致命。
2025-06-03 16:54:32
391
转载 做「长期主义者」的技术人们
近年来,传统的深度稀疏模型已经进入瓶颈,稀疏大模型是成为新的技术升级方向,但概率预估与生成式模型的差异,以及工业级的高请求、低延迟要求,使升级充满挑战。Taro 是由京东发起的开放式跨端跨框架解决方案,支持以 Web 的开发范式来实现小程序、H5、原生 APP 的跨端统一开发,从18年开源至今,在 GitHub 已累计获得 36,000+ Stars。2、在技术工作的初期,我往往会从一个个具体的问题点切入,比如优化某个算法的性能、解决特定的技术难题等。1、在技术实践中,“简单”往往是最难实现的。
2025-05-29 10:22:19
187
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
191
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
95
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
150
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
104
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
63
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
130
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
80
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
33
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
95
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
140
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
该方法在选择性移除不太重要的tokens的同时,保留了最有信息量的tokens,即使在移除大量数据的情况下,也能提升模型性能。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。通过上述实验,不仅确认了“沙漏”效应的存在,还阐明了其对模型性能的具体影响,从而为未来的优化提供了坚实的基础。
2025-05-28 16:15:39
77
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
86
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
113
转载 EMNLP 2024 | 突破RQ-SID“沙漏“瓶颈,提高生成式搜推上限
基于此,我们对该现象进行了深入的理论与实验分析,并提出了相应的解决方案。解决沙漏现象的方法有多种,在此简单的从分布角度提出两种简单易行的方法:一种启发式的方法是直接移除第二层,从而消除长尾效应的影响。需要注意的是,这里首先要生成一个L层的语义ID(SID),然后再移除第二层,这与直接生成一个两层的SID不同,因为后者可能仍然存在大的路由节点。然而,当交换后给定第一个标记时,输出任务变为预测第二或第三层的SID,这使得任务变得更简单,并且长尾分布不再影响结果(因为给定了真实的SID1),因此效果显著提升。
2025-05-28 16:15:39
48
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人