漫画趣解:大模型预训练、后训练、微调 (DeepSeek-V3如何通过强化学习后训练超越GPT-4.5)

文章通过通俗易懂的比喻详细解释了大模型训练的三个阶段:预训练(基础学习)、后训练(专业强化)和微调(实战应用)。重点介绍了DeepSeek-V3-0324如何通过改进后训练方法(特别是采用GRPO强化学习技术)在推理任务上超越GPT-4.5。文章指出未来大模型训练的主要需求将转向后训练和微调阶段,而非大规模预训练。


上个月,DeepSeek悄悄做了一次更新,发布了一个小版本:DeepSeek-V3-0324。

这个版本大幅提高了在推理类任务上的表现水平,在数学、代码类相关评测集上取得了超过 GPT-4.5 的得分成绩。

怎么做到的呢?DeepSeek官方文档是这么说↓

新版 V3 模型借鉴 DeepSeek-R1 模型训练过程中所使用的强化学习技术,与之前的 DeepSeek-V3 使用同样的 base 模型,仅改进了后训练方法。

这里面提到了一个词:后训练。

啥是后训练,跟预训练有啥区别?

今天我们用最通俗的比喻,来讲讲大模型三个不同阶段的训练方法:❶预训练(Pre-training)❷后训练(Post-training)❸微调(Fine-tuning)。

预训练就是用大量的通用数据集先训练模型,让它掌握基础知识和技能(通用语言能力和世界常识,比如刚发布的Llama 4在200种语言上进行预训练)。

这就好比我们的中小学阶段,系统地学习语文、数学、英语等基础学科知识。

这个阶段数据规模庞大,训练成本高,周期长(数万GPU天),比如Llama 4 Scout预训练就使用了40万亿tokens数据。

想想我们小时候刷过的题、吃过的苦、花费的时间、挨过的骂……

预训练的成本和时间一下子就具象化了。

再说后训练

后训练是指在预训练完成后的进一步训练阶段,目的在于让模型更好地适应实际的特定任务或应用场景。

这就好比高中毕业(预训练结束),考上大学,有了明确的专业方向,开始强化专业知识。

后训练阶段,数据规模小,通常是特定领域的数据(专业基础课和专业课),训练周期短(修够学分就行)。

回想一下你的大学生活,是不是比以前轻松多了

不过,后训练往往不止一次,可能要根据实际需求,持续深造,不断优化。

这就好比我们上完本科,可能还要硕士、博士,持续深造,让自己的专业能力越来越扎实。

目前,在模型后训练环节,比较流行的是采用强化学习(RL:Reinforcement Learning)的方法。比如在DeepSeek-V3小版本发布的通告里,就特别指出了自己采用了强化学习进行后训练。

简单讲,强化学习就后训练的过程中不断告诉模型:①你做得好,继续保持(给正反馈);②你做的不好,赶紧改正(给负反馈)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

通过这种“奖惩机制”,让模型学习更有针对性,表现也更好。

但是这种”打一巴掌、给个甜枣“的方法,有时候会把模型心态搞崩,太过于追求奖励的结果了而走极端。

所以,为了避免走极端,最近流行一种新的强化学习方法,叫做GRPO(引导式正则化策略优化),比如DeepSeek R1的训练就采用了这种方法。

GRPO就是在传统强化学习的奖励机制之上,加入一个额外的约束(正则项),确保和最初的“比较好的模型”不会差距太大。

这样模型就可以平稳地进步,既能拿到高奖励,又不会走极端。

如此,GRPO成了当下大模型后训练中,最流行的强化学习手段,能更安全、稳定地提升AI的表现,生成的内容更符合人类喜欢的风格和预期。

最后说说微调

严格来讲,把微调单拎出来讲并不科学,因为微调其实也是模型「后训练」的一种方法。

不过,一般后训练(像前面说的强化学习方法),发生在模型提供商那里。模型提供商在「预训练」完成以后,通过多次「后训练」优化,最终把模型打造成可交付的产品或服务。

而微调这种「后训练」,通常发生在模型使用者那里(尤其是行业客户场景)。

只因出徒后的大模型虽然基础知识丰富、专业能力一流,可是实战技巧却是空白,到了行业场景没法直接上岗。

比如——

怎么办呢?进行上岗培训,这就是微调。

微调是针对特定任务(修电脑)的训练,数据量小但很精准、具体,老司机会把他的具体修理经验交给你,让你的知识更接地气。

至此,一个大模型经过预训练、后训练、微调。

终于可以上岗干活啦。

简单总结下↓

预训练:基础知识广泛学;

后训练:专业领域深入学;

微调:具体实操岗前学。

好了,基本概念介绍完毕。

从目前的国内的趋势看,做大规模预训练的公司会越来越少(坊间传闻,今年上半年真正在做预训练的公司只有两三家)。

未来训练方面的主要需求都是后训练和微调(当然更大的需求是推理)。

可是说,随着DeepSeek的半路杀出,国内大模型战役的第一阶段,已经结束,“裸泳者”即将浮出水面。

今年上半年真正在做预训练的公司只有两三家)。

未来训练方面的主要需求都是后训练和微调(当然更大的需求是推理)。

可是说,随着DeepSeek的半路杀出,国内大模型战役的第一阶段,已经结束,“裸泳者”即将浮出水面。

零基础如何高效学习大模型?

你是否懂 AI,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。

为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和鲁为民博士系统梳理大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

在这里插入图片描述

【大模型全套视频教程】

教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。

从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。

同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

在这里插入图片描述

深耕 AI 领域技术专家带你快速入门大模型

跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

图片

【精选AI大模型权威PDF书籍/教程】

精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

在这里插入图片描述

【AI 大模型面试题 】

除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。

【大厂 AI 岗位面经分享(92份)】

图片

【AI 大模型面试真题(102 道)】

图片

【LLMs 面试真题(97 道)】

图片

【640套 AI 大模型行业研究报告】

在这里插入图片描述

【AI大模型完整版学习路线图(2025版)】

明确学习方向,2025年 AI 要学什么,这一张图就够了!

img

👇👇点击下方卡片链接免费领取全部内容👇👇

在这里插入图片描述

抓住AI浪潮,重塑职业未来!

科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。

行业趋势洞察:

  • 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
  • 人才争夺战: 拥有3-5年经验、扎实AI技术功底真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
  • 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。

与其观望,不如行动!

面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

在这里插入图片描述

01 为什么分享这份学习资料?

当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。

因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!

我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。

*02 这份资料的价值在哪里?*

专业背书,系统构建:

  • 本资料由我与鲁为民博士共同整理。鲁博士拥有清华大学学士美国加州理工学院博士学位,在人工智能领域造诣深厚:

    • 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇
    • 拥有多项中美发明专利。
    • 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
  • 目前,我有幸与鲁博士共同进行人工智能相关研究。

在这里插入图片描述

内容实用,循序渐进:

  • 资料体系化覆盖了从基础概念入门核心技术进阶的知识点。

  • 包含丰富的视频教程实战项目案例,强调动手实践能力。

  • 无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考助力你提升技术能力,向大模型相关岗位转型发展

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

抓住机遇,开启你的AI学习之旅!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值