Yolov5 基本环境(cpu)搭建记录

本文介绍如何在CPU环境下搭建YOLOv5环境,包括安装Anaconda、PyCharm等软件,配置Python环境,安装torch及YOLOv5相关依赖,并通过示例验证其正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Yolov5 基本环境(cpu)搭建记录

软件包:
1.anaconda(https://www.anaconda.com/)
2.pycharm(https://www.jetbrains.com/pycharm/)
3.torchvision-0.11.0+cpu-cp37-cp37m-win_amd64.whl(https://download.pytorch.org/whl/torchvision/)
4.torch-1.10.0+cpu-cp37-cp37m-win_amd64.whl(https://download.pytorch.org/whl/torch/)
5.yolov5-master.zip(https://github.com/ultralytics/yolov5/)
6.yolov5s.pt(https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt)

1.安装anaconda,创建py3.7环境;
2.进入py3.7环境,设置pip地址为清华源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3.cd 进入到软件包3、4路径下,依次安装torch、torchvision
pip install torch-1.10.0+cpu-cp37-cp37m-win_amd64.whl
pip install torchvision-0.11.0+cpu-cp37-cp37m-win_amd64.whl
4.输入Python进入环境,然后输入
import torch
torch.version
查询是否安装成功,显示
‘1.10.0+cpu’
则成功安装torch.
5.yolov5-master.zip解压缩,并把yolov5s.pt文件放到解压目录里,cd进入YOLOv5master路径下
pip install --user -r requ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值