电子技术——伯德图与反馈
增益和相位边距
从上两节我们知道环路增益 AβA\betaAβ 可以决定一个系统的稳定性,一个更加简单和有效的方法是我们可以绘制 AβA\betaAβ 的伯德图(因为相位可以达到360度,因此这是一个四阶响应系统):
上图中的负反馈网络是稳定的,因为在其180度相移点 ω180\omega_{180}ω180 的地方,对应的幅值小于单位一,我们称此时的幅值到单位一的间距称为 增益边距 ,通常使用分贝单位。增益边距表明在系统变得不稳定之前还能增加的闭环增益,在设计反馈放大器中,通常留出足够的增益边距,为了让外界因素(如温度)对闭环增益的影响起到缓冲作用。
另外,如果一个系统是稳定的,那么在其 ∣Aβ∣|A\beta|∣Aβ∣ 大于一的部分,此时对应的相位差应该小于 180180180 度,也就是说,在单位增益点 ω1\omega_1ω1 的地方对应的频率应该大于 −180-180−180 ,此时我们记其到 −180-180−180 的距离为 相位边距 。
相位边距对闭环响应的影响
一般的反馈放大器设计中,都让其相位边距大于45度。为了说明相位边距对闭环响应的影响,我们假设一个理想的闭环反馈 A0β≫1A_0\beta \gg 1A0β≫1 此时的中频闭环响应为 1/β1/\beta1/β 。我们可以将单位增益出的环路增益写作:
A(jω1)β=1×e−jθ A(j\omega_1) \beta = 1 \times e^{-j\theta} A(jω1)β=1×e−jθ
这里:
θ=180∘−phase margin \theta = 180^\circ - phase\ margin θ=180∘−phase margin
带入:
Af(jω1)=(1/β)e−jθ1+e−jθ A_f(j\omega_1) = \frac{(1 / \beta)e^{-j\theta}}{1 + e^{-j\theta}} Af(jω1)=1+e−jθ(1/β)e−jθ
则其大小为:
∣Af(jω1)∣=1/β∣1+e−jθ∣ |A_f(j\omega_1)| = \frac{1/\beta}{|1 + e^{-j\theta}|} ∣Af(jω1)∣=∣1+e−jθ∣1/β
带入 θ=180∘−45∘\theta = 180^\circ - 45^\circθ=180∘−45∘ :
∣Af(jω1)∣=1.31β |A_f(j\omega_1)| = 1.3 \frac{1}{\beta} ∣Af(jω1)∣=1.3β1
这说明此时的增益是中频增益的1.3倍。相位边距越小,这个值就越大,最终当相位边距为零的时候,这个值为无穷,此时系统是不稳定的。
另外一种分析方法
有时候若想分析多种 β\betaβ 对放大器的影响,我们可以先单独绘制出 A(s)A(s)A(s) 的伯德图,现在假设 β\betaβ 与频率无关,此时再绘制直线 20log1β20\log\frac{1}{\beta}20logβ1 两个图像的差值即为闭环增益:
20log∣A(jω)∣−20log1β=20log∣Aβ∣ 20 \log|A(j\omega)| - 20 \log \frac{1}{\beta} = 20 \log|A\beta| 20log∣A(jω)∣−20logβ1=20log∣Aβ∣
如图:
此时单位频率点就是两个曲线的交点,如图上面的曲线(a)对应的负反馈放大器是稳定的,而(b)则是不稳定的。
一般根据经验来说,相位差在180度时总是发生在-40dB/decade的区间中,我们需要保证两个直线的交点在-20dB/decode中(称为 关闭斜率 ),就基本可以保证负反馈放大器是稳定的,并且留有大于45度的相位边距。