电子技术——A类输出阶
因为射极跟随器具有较低的输出阻抗,射极跟随器是A类输出阶的典型代表。我们之前已经学习过射极跟随器的小信号模型,本节我们讨论其大信号模型。
传输特性
下图展示了一个射极跟随器的原理图:
其中 Q1Q_1Q1 为射极跟随器,电流源 Q2Q_2Q2 提供偏置电流 III 。传输方程为:
vO=vI−vBE1 v_O = v_I - v_{BE1} vO=vI−vBE1
其中 vBE1v_{BE1}vBE1 的大小依赖于 iE1i_{E1}iE1 因为 iE1=I+iLi_{E1} = I + i_LiE1=I+iL 因此依赖于输出电流 iLi_LiL 若我们忽略输出电流的影响(假设一直是0.7V)那么传递曲线为:
当 Q1Q_1Q1 饱和时,达到输出最大电压:
vOmax=VCC−VCE1sat v_{Omax} = V_{CC} - V_{CE1sat} vOmax=VCC−VCE1sat
对于负向,当 Q2Q_2Q2 饱和的时候,达到理论的最小输出电压:
VOmin=−VCC+VCE2sat V_{Omin} = -V_{CC} + V_{CE2sat} VOmin=−VCC+VCE2sat
或是 Q1Q_1Q1 截止:
VOmin=−IRL V_{Omin} = -IR_L VOmin=−IRL
若想达到理论的最小输出电压,必须满足:
I≥∣−VCC+VCE2sat∣RL I \ge \frac{|-V_{CC} + V_{CE2sat}|}{R_L} I≥RL∣−VCC+VCE2sat∣
输出波形
还是考虑上面的电路,若忽略 VCEsatV_{CEsat}VCEsat 并且偏置电流 III 选择合适,那么波形就可以在−VCC-V_{CC}−VCC 到 +VCC+V_{CC}+VCC 摆动,静态点为零电压,如图:
对应的 vCE1=VCC−vOv_{CE1} = V_{CC} - v_OvCE1=VCC−vO 的波形对应如下:
若假设 Q2Q_2Q2 进入饱和区时 Q1Q_1Q1 恰好关闭,即:
I=VCC/RL I = V_{CC}/R_L I=VCC/RL
则 iC1i_{C1}iC1 电流为:
耗散功率
下图展示了 Q1Q_1Q1 的 瞬时耗散功率 变化 pD1≡vCE1iC1p_{D1} \equiv v_{CE1}i_{C1}pD1≡vCE1iC1 :
上图中我们发现最大瞬时耗散功率为 VCCIV_{CC}IVCCI 此时 Q1Q_1Q1 没有输入信号,也就是静态点。也就是说,当放大器没有信号输入的时候,此时静态管的功率耗散达到最大值,我们知道无信号输入很有可能发生并且发生的时间可能很长,因此 Q1Q_1Q1 将可能持续保持在高功率的状态下。
其中 Q1Q_1Q1 的耗散功率取决于负载 RLR_LRL ,考虑一种极端情况,即负载开路的情况, Q1Q_1Q1 通过的电流一直是 III ,此时耗散功率取决于输出电压 vOv_OvO ,最大功率 pD1=2VCCIp_{D1} = 2V_{CC}IpD1=2VCCI 发生在 vO=−VCCv_O = -V_{CC}vO=−VCC 的时候。然而,这个情况不可能保持太久,因此在设计上不需要考虑这一点,而此时的平均功率为 VCCIV_{CC}IVCCI 。另外一种极端情况发生在 RL=0R_L = 0RL=0 的时候,即负载短路。理论情况下 RLR_LRL 和 Q1Q_1Q1 会通过无限大的负载电流,实际情况下受到非线性因素的影响,此时 Q1Q_1Q1 会达到最大耗散功率,此时BJT的结温可能会达到极限值,因此为了防止这种情况,输出阶应该配备 短路保护电路 。
电流源 Q2Q_2Q2 的耗散功率也必须考虑在内,因为 Q2Q_2Q2 通过的电流值不变始终是 III 。因此 Q2Q_2Q2 的最大功率为 2VCCI2V_{CC}I2VCCI 此时 vO=VCCv_O = V_{CC}vO=VCC ,同样这个情况不会发生太长时间,其平均功率为 VCCIV_{CC}IVCCI 。
能量转换效率
输出阶的能量转换效率定义为:
η≡Load power(PL)Supply power(PS) \eta \equiv \frac{\text{Load power}(P_L)}{\text{Supply power}(P_S)} η≡Supply power(PS)Load power(PL)
对于输出一个峰值为 Vo^\hat{V_o}Vo^ 正弦信号,则负载的平均功率为:
PL=(Vo^/2)2RL=12Vo^2RL P_L = \frac{(\hat{V_o} / \sqrt{2})^2}{R_L} = \frac{1}{2} \frac{\hat{V_o}^2}{R_L} PL=RL(Vo^/2)2=21RLVo^2
通过 Q1Q_1Q1 和电源的平均电流为 III 电源电压为 2VCC2V_{CC}2VCC 因此电源的平均功率为:
PS=2VCCI P_S = 2V_{CC} I PS=2VCCI
则能量转换效率为:
η=14Vo^2IRLVCC=14(Vo^IRL)(Vo^VCC) \eta = \frac{1}{4} \frac{\hat{V_o}^2}{IR_LV_{CC}} = \frac{1}{4}(\frac{\hat{V_o}}{IR_L}) (\frac{\hat{V_o}}{V_{CC}}) η=41IRLVCCVo^2=41(IRLVo^)(VCCVo^)
因为 Vo^≤VCC,Vo^≤IRL\hat{V_o} \le V_{CC}, \hat{V_o} \le IR_LVo^≤VCC,Vo^≤IRL 因此当:
Vo^=VCC=IRL \hat{V_o} = V_{CC} = IR_L Vo^=VCC=IRL
的时候达到理论能量转换效率最大值 25%25\%25% 。因为其过低的能量转换效率,A类输出阶很少被使用在大功率(大于1W)的输出设备上。实际上的能量转换效率在 10%∼20%10\% \sim 20\%10%∼20% 。