Pandas使用

本文介绍了如何在Pandas中使用drop_duplicates方法删除数据框的重复行,以及利用subset参数指定删除特定列的重复项。还讲解了数据框重置索引、分组和删除特定条件行的操作,以及Series作为Pandas基本对象的重要功能和用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df = df.drop_duplicates(inplace = True) 删除数据框中所有重复的行【即删除所有列均相同的行】

df = df.drop_duplicates(subset = []) 使用subset参数指定需要删除重复行的列

df = df.reset_index(drop=True) 数据框重置索引并删除原来的索引列

df = df.groupby(' ').head(1) 对数据框分组并保留组内第一行记录

# df_perception = df_perception.drop(df_perception[df_perception['useful_list'] == 0].index) 选择对应的数据删除

Series是Pandas中最基本对象,Series类似一种一维数组;

可以通过Series的两个属性values和index获取内容以及索引;

Series对象有字典的功能;

可以将字典转换成Series;

  • Series对象的下标运算同时支持位置标签两种方式:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值