62. 不同路径

62. 不同路径

1.题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
在这里插入图片描述
说明:m 和 n 的值均不超过 100。
示例 1:
在这里插入图片描述
示例 2:
在这里插入图片描述

2.思路

动态规划,我们令 dp[i][j] 是到达 i, j 最多路径,
动态方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
注意,对于第一行 dp[0][j],或者第一列 dp[i][0],由于都是在边界,所以只能为 1,时间复杂度:O(m∗n)
优化:因为我们每次只需要 dp[i-1][j],dp[i][j-1],因此只需要保留当前行与上一行的数据,即dp[j] = dp[j] + dp[j-1]

3.代码

class Solution {
public:
//dp[i][j] = dp[i-1][j] + dp[i][j-1]
    int uniquePaths(int m, int n) {
        vector<int> dp(n,1);
        for(int i = 1;i < m;++i){
            for(int j = 1;j < n;++j){
                dp[j] += dp[j-1];
            }
        }
        return dp[n-1];
    }
};

4.复杂度分析

时间复杂度:O(m*n),m,n是矩阵的长宽。
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值