62. 不同路径
1.题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
示例 2:
2.思路
动态规划,我们令 dp[i][j] 是到达 i, j 最多路径,
动态方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
注意,对于第一行 dp[0][j],或者第一列 dp[i][0],由于都是在边界,所以只能为 1,时间复杂度:O(m∗n)
优化:因为我们每次只需要 dp[i-1][j],dp[i][j-1],因此只需要保留当前行与上一行的数据,即dp[j] = dp[j] + dp[j-1]
3.代码
class Solution {
public:
//dp[i][j] = dp[i-1][j] + dp[i][j-1]
int uniquePaths(int m, int n) {
vector<int> dp(n,1);
for(int i = 1;i < m;++i){
for(int j = 1;j < n;++j){
dp[j] += dp[j-1];
}
}
return dp[n-1];
}
};
4.复杂度分析
时间复杂度:O(m*n),m,n是矩阵的长宽。
空间复杂度:O(n)