约瑟夫环问题 - Python

基本问题描述:
已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为1的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。(也类似于变态杀人狂问题)通常解决这类问题时我们把编号从0~n-1,最后结果+1即为原问题的解。通常,我们会要求输出最后一位出列的人的序号。那么这里主要研究的是最后一个出列的人的序号要怎么确定。

当n,m数据量很小的时候,我们可以用循环链表模拟约瑟夫环的过程。当模拟到人数等于1的时候,输出剩下的人的序号即可。
具体解法这种方法往往实现起来比较简单,而且也很容易理解。但是时间复杂度却是很糟糕的,达到了O(nm),这样的话,其实在n,m比较大的时候(nm达到10^8或者更大),那么要得出结果往往需要耗费很长的时间,但是我们可以运用一点数学上的技巧,将最后结果推导出来。

为了简化出列的过程:
首先我们把这n个人的序号编号从0~n-1(理由很简单,由于m是可能大于n的,而当m大于等于n时,那么第一个出列的人编号是m%n,而m%n是可能等于0的,这样编号的话能够简化后续出列的过程),当数到m-1的那个人出列,因此我们编号完成之后,开始分析出列的过程:
第一次出列:
一开始的时候,所有人的编号排成序列的模式即为:
0,1,2,3,4,5...n-2,n-1
那么第一次出列的人的编号则是(m-1)%n1,那么在第一个人出列之后,从他的下一个人又开始从0开始报数,为了方便我们设k1 = m%n1(n1为当前序列的总人数)那么在第一个人出列之后,k1则是下一次新的编号序列的首位元素,那么我们得到的新的编号序列为:
k1,k1+1,k1+2,k1+3...n-2,n-1,0,1,2...k1-3,k1-2 (k1-1第一次已出列)
那么在这个新的序列中,第一个人依旧是从0开始报数,那么在这个新的序列中,每个人报的相应数字为:
0,1,2,3....n-2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值