【动手做】Python实现线性回归

线性回归是机器学习中形式比较简单的模型,能够很好的进行推导和求解,也便于图形化展示。关于线性回归的概念和表示,在线性回归的概念与表示有比较详细的的介绍。本文通过手动实现、调用scikit-learn类库两种方式演示了线性回归模型,并通过matplotlib进行了可视化展示。

实现过程

本次实践的流程如下图所示:

实践分为四个步骤:数据准备、模型求解、查看结果、可视化展示。每一步要做的工作如下:

第一步:准备数据

机器学习就是从数据中进行学习的科学。关于数据的处理,已经逐步成为一门专门的科学和工作,数据的质量也成了模型好歪的关键之一。

本次实践的核心是展示线性回归模型的逻辑,为了处理简单,也为了把精力聚焦在模型上,这里通过一段简单的代码自己生成数据,这样就可以减少数据预处理的工作。

第二步:模型求解

关于机器学习,有很多著名的类库可以使用,这里我们采用两种方式:

1、手动编码实践一下推演的过程

2、使用现在比较流行的类库直接进行求解

第三步:查看结果

这一步主要用来查看在第2步求解的结果,并与第1步中设置的真相(truth)是否吻合。

第四步:可视化展示​

线性回归是最经典的、也最容易理解、也是少有的能够直观查看结果效果的,在这里加入了一个绘图的步骤,可以直观查看求解出来的模型与现实情况的吻合度情况。

在这个实践中,这一步不是必须的,但是可视化能够让人的感觉更加直观。同时,可视化技术也是当今比较热门的技术之一。

数据准备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乘风而来的思绪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值