线性回归是机器学习中形式比较简单的模型,能够很好的进行推导和求解,也便于图形化展示。关于线性回归的概念和表示,在线性回归的概念与表示有比较详细的的介绍。本文通过手动实现、调用scikit-learn类库两种方式演示了线性回归模型,并通过matplotlib进行了可视化展示。
实现过程
本次实践的流程如下图所示:
实践分为四个步骤:数据准备、模型求解、查看结果、可视化展示。每一步要做的工作如下:
第一步:准备数据
机器学习就是从数据中进行学习的科学。关于数据的处理,已经逐步成为一门专门的科学和工作,数据的质量也成了模型好歪的关键之一。
本次实践的核心是展示线性回归模型的逻辑,为了处理简单,也为了把精力聚焦在模型上,这里通过一段简单的代码自己生成数据,这样就可以减少数据预处理的工作。
第二步:模型求解
关于机器学习,有很多著名的类库可以使用,这里我们采用两种方式:
1、手动编码实践一下推演的过程
2、使用现在比较流行的类库直接进行求解
第三步:查看结果
这一步主要用来查看在第2步求解的结果,并与第1步中设置的真相(truth)是否吻合。
第四步:可视化展示
线性回归是最经典的、也最容易理解、也是少有的能够直观查看结果效果的,在这里加入了一个绘图的步骤,可以直观查看求解出来的模型与现实情况的吻合度情况。
在这个实践中,这一步不是必须的,但是可视化能够让人的感觉更加直观。同时,可视化技术也是当今比较热门的技术之一。