2、Line Charts折线图

本教程介绍如何使用Python进行数据可视化,特别是折线图。内容包括Jupyter notebooks的设置、数据集的选择和加载、数据的检查、数据可视化的实现以及绘制数据子集的方法。教程以Spotify全球每日播放量数据为例,展示了如何创建专业外观的折线图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可视化时间趋势

现在你已经熟悉了编码环境,是时候学习如何制作自己的图表了!

在本教程中,您将学习足够的Python来创建专业外观的折线图。然后,在接下来的练习中,您将使用您的最新技能处理真实世界的数据集。
本课程数据集夸克网盘下载链接:https://pan.quark.cn/s/a235ac6b2616
提取码:1Ymk

使用的数据集为:spotify.csv

1、Jupyter notebooks设置

首先,我们开始设置编程环境。

In [1]:

import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")

Setup Complete

2、选择一个数据集

  1. 此教程的数据集跟踪了音乐流媒体服务Spotify上的全球每日播放量。我们关注2017年和2018年的五首热门歌曲:
    • “Shape of You”,艾德·希兰(https://bit.ly/2tmbfXp)
    • “Despacito”,路易斯·冯西(https://bit.ly/2vh7Uy6)
    • “Something Just Like This”,The Chainsmokers和Coldplay(https://bit.ly/2OfSsKk)
    • “HUMBLE.”,肯德里克·拉玛尔(https://bit.ly/2YlhPw4)
    • “Unforgettable”,法国蒙塔纳(https://bit.ly/2oL7w8b)

在这里插入图片描述

请注意,出现的第一个日期是2017年1月6日,对应于Ed Sheeran的“The Shape of You”的发布日期。而且,使用该表,您可以看到“The Shape of You”在其发布当天在全球范围内被播放了12,287,078次。请注意,其他歌曲在第一行中缺少值,因为它们直到后来才发布!

3、加载数据

正如您在之前的教程中学到的,我们使用pd.read_csv命令加载数据集。

In [2]:

# 文件路径
spotify_filepath = "../input/spotify.csv"

# 读取文件到变量 spotify_data
spotify_data = pd.read_csv(spotify_filepath, index_col="Date", parse_dates=True)

运行上面两行代码的最终结果是,我们现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法蒋同学

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值