4、散点图

这篇教程详细介绍了如何使用Python创建和增强散点图,用于探索变量间的关系。内容包括基本散点图、按颜色编码的散点图,以及如何利用散点图展示三个变量间的相互作用,特别是针对BMI、保险费用和吸烟状况的数据分析。通过示例代码展示了如何利用seaborn库绘制带有回归线的散点图,揭示吸烟对BMI和保险费用影响的显著差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用坐标平面来探索变量之间的关系

In this tutorial, you’ll learn how to create advanced scatter plots.

本课程数据集夸克网盘下载链接:https://pan.quark.cn/s/a235ac6b2616
提取码:1Ymk

使用的数据集为:insurance.csv

1、准备好笔记本

像往常一样,我们从设置编码环境开始。(这段代码是隐藏的,但是你可以点击右边紧挨着这段文字下面的“代码”按钮来解除隐藏。)

In [1]:

import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")
Setup Complete

2、加载并检查数据

我们将使用一个(合成的)保险费用数据集,看看我们是否能够理解为什么一些客户比其他人支付更多。
在这里插入图片描述

如果您愿意,您可以在最上面的链接里找到更多的数据集进行联系。

In [2]:

# Path of the file to read
insurance_filepath = "../input/insurance.csv"

# Read the file into a variable insurance_data
insurance_data = pd.read_csv(insurance_filepath)

像往常一样,我们通过打印前五行来检查数据集是否正确加载。

In [3]:

insurance_data.head()

Out[3]:

age sex bmi children smoker region charges
0 19 female 27.900 0</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法蒋同学

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值