
可解释机器学习
文章平均质量分 93
可解释机器学习(Explainable ML)是一种让人类用户可以理解并信任机器学习算法创建的结果和输出的方法。
AI算法蒋同学
信息学奥赛教练!从事AI视觉检测、AI数据智能相关产品研发工作!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
5、SHAP 值的高级用法
我们首先学习了排列重要性和部分依赖图,以了解模型学到了什么。然后我们学习了SHAP值,以分解个别预测的组件。现在我们将扩展SHAP值的应用,看看如何聚合许多SHAP值可以提供比排列重要性和部分依赖图更详细的替代方案。原创 2024-02-04 19:58:20 · 957 阅读 · 0 评论 -
4、SHAP值理论
你已经看到(并使用过)从机器学习模型中提取一般性解释的技术。但是如果你想详细分析模型对于单个预测的工作原理呢?SHAP值(来自SHapley Additive exPlanations的缩写)将一个预测分解,以显示每个特征的影响。在哪些情况下可以使用这个?一个模型说银行不应该向某人贷款,而银行在法律上被要求解释每笔贷款拒绝的依据一个医疗保健提供者想要确定是什么因素影响了每位患者患某种疾病的风险,以便他们可以通过有针对性的健康干预措施直接应对这些风险因素在本课程中,您将使用SHAP值解释个别预测。原创 2024-02-04 19:53:49 · 1658 阅读 · 0 评论 -
3、部分图 Partial Plots
每个特征如何影响您的预测?原创 2024-02-03 20:02:49 · 1289 阅读 · 0 评论 -
2、排列重要性 Permutation Importance
对于模型来说,我们可能会问的最基本的一个问题是:哪些特征对预测影响最大?这个概念被称为特征重要性。有多种方法可以衡量特征重要性。一些方法回答了上面提到的问题的微妙不同版本。其他方法已经记录了一些缺点。在本课程中,我们将专注于排列重要性。计算速度快,被广泛使用和理解,与我们希望特征重要性度量具有的属性一致。原创 2024-02-03 19:59:11 · 1292 阅读 · 0 评论 -
1、模型可解释性的应用场景
许多人说机器学习模型是“黑箱”,因为它们可以做出良好的预测,但你无法理解这些预测背后的逻辑。这种说法在某种程度上是正确的,因为大多数数据科学家还不知道如何理解这些预测背后的逻辑。原创 2024-02-02 21:14:51 · 1167 阅读 · 0 评论