android二维码识别原理与测试方法

本文探讨了二维码识别过程中遇到的问题,包括点阵密度、纠错等级、环境因素等对识别成功率的影响。提出了缩短URL、降低纠错等级及针对不同机型的适配方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先看看二维码识别原理:

一.我们都是使用二维码生成工具制码,原理对于我们意义并不是很大,这里就不浪费地方复制黏贴了。二维码编码原理请google。

二.下面是与本次问题相关的一些经验。

1.   同一尺寸同一纠错等级下:二维码的点阵密度和包含的字串长度成正比。即信息含量越大,点阵越密。第2张码点阵就密集的多。

2.   同一尺寸同一URL:二维码的点阵密度,和纠错等级成正比。(即纠错等级越高,点阵越密。)采用目前的低端机C8650测试,(后置摄像头300W像素,支持自动对焦)

测试发现,相同尺寸下,点阵密度到达一定程度将无法识别。纠错等级是用来当二维码不完整时,也可以正确识别而产生的。

简单的可以理解为,只要纠错等级高,即使只有半张二维码,也可以扫描识别正确。由于我们的二维码是放在店内的,二维码不易损坏。

因此我们完全可以尝试用最低等级,以降低点阵密度,提高识别率。

3.更悲剧的是有的门店的二维码只有这么点小:

4.周围环境,如拍摄距离,角度,光线等因素都会造成识别以后图像信息缺失,导致失败。比如一茶一坐的二维码是放在会反光的桌牌里,相比较来看,它的二维码识别率就低很多。

各种证明+推测得出以下结论,主要问题点:

1.   由于我们的URL长度较长,导致生成的二维码,在小尺寸下,点阵过密,导致无法识别。不考虑环境因素。

2.二维码物料大部分是放在桌牌里的,餐厅光线条件差,很多机型识别以后图像损失严重。亲们想一想,用个低端机在昏暗的光线下自拍,能看清楚自己的脸不???就是iphone这种机型也会经常识别失真。

 各种机型的识别程度估计:

 

机型

摄像头

识别成功率毛估

 

高端机

支持自动对焦,像素高,芯片好

 80%

 

中端机 

支持自动对焦,像素低,芯片一般

 60%

 

 低端机

 不支持自动对焦

 。。。。

 


建议改进方法如下,供参考:

  

方法编号

方法

优点

缺点

1

1.将URL改短

2.重新印刷二维码

可以继续张贴小尺寸的二维码

1.  需要修改我们的系统

2.  重新印刷二维码

2

将二维码纠错等级降低,重新印刷二维码。

可以继续张贴小尺寸的二维码

重新印刷二维码

3

只改动APP,

对低端机提示不支持二维码扫描。

用户体验会好

低端机无法使用。

是否要对低端机区别对待,要看产品的定位,和用户机型的了解。

后续的监测与测试方法:

建议使用UserTrack + 低端机检测包配合使用,

统计出无法扫描成功的低端机占总扫描设备的百分比,再来做方案2 和3 的选择。

 

目前:

2.6.3扫码更换成淘宝主客户端扫码控件,这样改进点为:

1扫码时自动打开闪光灯,补偿光线,并且自动对焦。降低环境影响。

2将URL改为短连接,重新制码,降低点阵密度。

3.首先识别机型,如果机型不支持自动对焦则提示用户淘宝点点暂时不支持这种机型(未实现)

4.用UserTrack + 低端机检测包,监测失败机型(未实现)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序邦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值