双向 LSTM (BiLSTM)

在本文中,我们将首先讨论双向 LSTM 及其架构。然后,我们将研究使用 Bidirectional LSTM 实现审查系统。最后,我们将在讨论双向 LSTM 的应用时结束本文。

双向 LSTM (BiLSTM)


双向 LSTM 或 BiLSTM 是一个术语,用于包含两个 LSTM 层的序列模型,一个用于处理正向输入,另一个用于向后处理。它通常用于与 NLP 相关的任务。这种方法背后的直觉是,通过双向处理数据,模型能够更好地理解序列之间的关系(例如,了解句子中的前后词)。

为了更好地理解这一点,让我们看一个例子。第一句是“服务器你能给我带这道菜吗”,第二句是“他使服务器崩溃”。在这两个语句中,单词 server 具有不同的含义,这种关系取决于语句中的后面和前面的单词。与单向 LSTM 相比,双向 LSTM 有助于机器更好地理解这种关系。BiLSTM 的这种功能使其成为情感分析、文本分类和机器翻译等任务的合适架构。

建筑

双向 LSTM 的架构由两个单向 LSTM 组成,它们在正向和反向处理序列。这种架构可以解释为具有两个独立的 LSTM 网络,一个按原样获取令牌序列,而另一个则按相反的顺序获取。这两个 LSTM 网络都返回一个概率向量作为输出,最终输出是这两个概率的组合。它可以表示为:

  • :网络的最终概率向量。
  • :来自正向 LSTM 网络的概率向量。
  • :来自后向 LSTM 网络的概率向量。

双向 LSTM 层架构

双向 LSTM 层架构

图 1 描述了 BiLSTM 层的架构,其中 是输入令牌, 是输出令牌,

和  是 LSTM 节点。的最终输出

是 和  LSTM 节点的组合 

现在,让我们看看使用 Tensorflow 库在 Python 中使用 BiLSTM 层的审查系统的实现。我们将对 IMDB 电影评论数据集进行情感分析。我们将从头开始实施网络并对其进行训练以识别评论是正面还是负面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法资料吧!

我会继续分享编程资料,学习资料

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值