目录
人体活动识别(HAR)是通过传感器或其他数据源来识别和分类人体运动的技术。随着可穿戴设备、智能手机及各类传感器技术的发展,HAR已广泛应用于健康监测、智能家居、运动追踪和安全系统等多个领域。本文重点探讨如何利用深度学习模型提升HAR系统的准确性和效率。
人类活动识别(HAR)概述
人体活动识别是指通过分析传感器数据来辨识各类日常活动。这项技术主要利用智能手机或可穿戴设备内置的加速度计和陀螺仪来采集用户运动和方位数据。常见的可识别活动包括:
- 行走
- 上楼梯
- 下楼梯
- 静坐
- 站立
其中,加速度计负责测量加速度的幅度和方向,用于检测运动状态;陀螺仪则专注于监测角速度变化,确保设备方向判断不受倾斜或旋转干扰。