【项目实战】使用深度学习模型进行人类活动识别(Python源码)

目录

人类活动识别(HAR)概述

深度学习模型在人体活动识别(HAR)中如何发挥作用

执行用于人体活动识别(HAR)的长短期记忆网络(LSTM)

数据集信息

实施流程

源码实战

导入库

上传数据集

数据转换

分割数据集

模型构建

数据优化

模型迭代

准确率图表

混淆矩阵


人体活动识别(HAR)是通过传感器或其他数据源来识别和分类人体运动的技术。随着可穿戴设备、智能手机及各类传感器技术的发展,HAR已广泛应用于健康监测、智能家居、运动追踪和安全系统等多个领域。本文重点探讨如何利用深度学习模型提升HAR系统的准确性和效率。

人类活动识别(HAR)概述

人体活动识别是指通过分析传感器数据来辨识各类日常活动。这项技术主要利用智能手机或可穿戴设备内置的加速度计和陀螺仪来采集用户运动和方位数据。常见的可识别活动包括:

  • 行走
  • 上楼梯
  • 下楼梯
  • 静坐
  • 站立

其中,加速度计负责测量加速度的幅度和方向,用于检测运动状态;陀螺仪则专注于监测角速度变化,确保设备方向判断不受倾斜或旋转干扰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值