基于elasticsearch的自定义业务告警的设计思路

本文介绍了一种基于ELK堆栈的接口告警解决方案,适用于A系统与B系统接口交互频繁出现错误的情况。通过构建格式化的告警日志,利用Elasticsearch检索并触发告警通知,确保开发人员能及时响应问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A系统与B系统之间有很多接口交互,但是有一段时间接口经常报错,作为开发如果不能第一时间知道问题且及时解决的话就会收到业务投诉,当月绩效凉凉。

如果你也有这种场景,那么你就需要一个及时告警的功能。

实现方案

实现及时告警分以下两种场景:

  • 有ELK日志收集
  • 没有ELK日志收集

没有ELK日志收集的方案

~~很简单,搭建一个日志收集环境(O(∩_∩)O哈哈~
需要在业务代码中嵌入硬编码,每次catch到异常直接发送告警信息告警平台进行告警

有ELK日志收集的方案

最核心的是 elasticsearch组件,所有的告警方案前提条件都是告警日志需要进ES,然后定时从ES中检索出符合业务规定的告警日志(比如ERROR日志),如果检索出来的告警日志满足一定条件就触发告警通知。

实现方式主要有以下几种:

  • ES WATCHER
    这个是elasticsearch的官方插件,它可以根据数据的变化提供警报和通知,目前是收费的,具体操作配置可以参看官方地址

  • elastalert
    是Yelp公司基于python写的告警框架,大家可以去GitHub上查看具体使用方法。elastalert

  • 自定义开发

自定义开发实现

主要由以下几个步骤实现:

  1. 分离出单独的告警日志,与业务日志分离
  2. 在logstash中解析日志,构建格式化的告警日志,需要有以下几个关键参数:
    日志级别、日志时间、日志描述、开发模块、关联主键、请求参数、响应参数
  3. 定时任务每隔一段时间去ES中检索符合要求的日志,如果检索到就发送告警通知。

核心代码

  1. 日志格式化
    我们直接在客户端构建好格式化的日志,以json的形式输出到日志文件中,这样在logstash解析的时候直接使用json解析即可。
    这一步不是必须的,可以自由构建日志格式,然后在logstash解析的时候使用grok语法进行解析。
public class AlarmLog {
    /**日志级别*/
    private String logLevel;
    /**日志描述*/
    private String message;
    /**关联主键 一般使用requestId*/
    private String refCode;
    /**请求参数*/
    private String parm;
    /**响应数据*/
    private String response;
    /**开发模块,根据此参数配置模块负责人*/
    private String module;
    /**日志时间*/
    private long logTime;
	...
}
  1. 关键查询
    在单独的定时器项目中使用如下查询语法就可以检索出具体的告警日志。检索出来就可以根据日志中的模块字段找出具体的模块负责人,然后发送告警通知给负责人。
public List<LogDoc> findRangeLogByLevel(DateTime minRange, DateTime maxRange, String logLevel) {
	//需要强制转换成小写
	logLevel = logLevel.toLowerCase();
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
			.withQuery(boolQuery()
					//module 必须有值才能告警
					.must(existsQuery("module"))
					.must(termQuery("logLevel", logLevel))
					.must(rangeQuery("logTime")
							.from(minRange.getMillis())
							.to(maxRange.getMillis())))
			.build();

	return elasticsearchTemplate.queryForList(searchQuery, LogDoc.class);
}

好了,各位朋友们,本期的内容到此就全部结束啦,能看到这里都是优秀的同学,下一个升职加薪的就是你了。

如果觉得这篇文章对你有所帮助的话请扫描下面二维码加个关注。“转发” 加 “在看”,养成好习惯!咱们下期再见!
在这里插入图片描述

### 数据库报警推送解决方案 为了实现高效的数据库报警并将其推送给相关人员,可以通过构建一个基于Java的推送服务智慧管理系统来完成这一目标。该系统能够有效提升信息推送的精准度、实时性和用户满意度[^1]。 #### 设计思路 系统的核心在于监控数据库状态,并在检测到异常时触发相应的报警机制。具体来说: - **数据采集层**:负责定期查询数据库健康状况指标(如CPU利用率、内存占用率、磁盘I/O等),并将这些数据上传至中间件。 - **业务逻辑层**:对接收到的数据进行分析判断是否存在潜在风险;一旦发现任何不符合预设阈值的情况,则立即启动报警流程。 - **通知推送层**:当确认需要发出警告时,此模块会调用外部API接口向指定联系人发送提醒消息。这里可以选择多种渠道作为传输媒介,比如电子邮件、即时通讯工具或是手机短信息服务等。 针对不同类型的告警方式,可以采用类似于`XXL-JOB`框架下的自定义通知类方法来进行扩展支持。只需创建一个新的Java类继承自特定接口(`com.xxl.job.admin.core.alarm.JobAlarm`),再按照文档说明重写相应的方法体即可轻松集成新的通信手段[^2]。 #### 技术选型建议 考虑到项目的可维护性与性能表现,在技术栈的选择方面推荐如下组合: - 使用Spring Boot快速搭建微服务体系结构; - 利用MyBatis简化SQL映射操作过程; - 借助RabbitMQ/Kafka这类分布式消息队列组件确保异步处理的安全可靠; - 集成Elasticsearch用于日志检索和可视化展示。 值得注意的是,在实施过程中要特别关注可能出现的消息丢失或重复消费等问题,避免因不当的设计而导致生产环境中产生不必要的麻烦[^3]。 ```java // 示例代码片段:定义一个简单的邮件报警器 public class EmailAlert implements JobAlarm { @Override public void send(String subject, String content) { try (Session session = Session.getDefaultInstance(new Properties())) { Message message = new MimeMessage(session); message.setFrom(new InternetAddress("[email protected]")); message.addRecipient(Message.RecipientType.TO, new InternetAddress("[email protected]")); message.setSubject(subject); message.setText(content); Transport.send(message); // 发送邮件 } catch (MessagingException e) { throw new RuntimeException(e); } } } ``` 通过上述设计方案和技术路线图的支持,相信能够很好地满足对于数据库报警推送的需求,同时也为后续的功能迭代打下了坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飘渺Jam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值