《AI大模型评测与智能测试》

《AI大模型评测与智能测试》

本书聚焦AI时代的“质量”核心,以“AI赋能测试”(AI For Testing)与“AI模型评测”(Testing For AI)为双轮驱动。内容不仅深入剖析如何科学度量AI大模型的内在质量,还系统讲解如何利用AI赋能传统软件测试,帮助读者贯通从模型原理、评测到应用开发的全链路知识。

全书共分三篇7章。第一篇“原理基石”(第1-3章)从底层原理出发,深入剖析了神经网络、Transformer等大模型核心技术。第二篇“评测枢纽”(第4-5章)聚焦大模型的科学评测,讲解了OpenCompass等框架实战与核心能力评测案例。第三篇“实践蓝图”(第6-7章)着眼于测试领域AI应用,重点介绍了RAG、AI Agent开发及构建端到端智能测试系统的方法。

本书特色在于其独特的“评测”与“赋能”双重视角,并从技术哲学高度对AI底层原理进行深刻洞察,理论与实践紧密结合。本书不仅适合希望系统掌握大模型技术的测试工程师、算法工程师阅读,也适合对AI技术落地有深度兴趣的产品经理和项目经理参考。

第一篇:原理基石 —— 洞察AI大模型的智慧之源

第1章 神经网络核心技术

  • 1.1 理解大模型必备的数学思想
    • 1.1.1 深度学习必然用到的线性代数知识
    • 1.1.2 深度学习必然用到的微积分知识
  • 1.2 从神经元到深度学习
    • 1.2.1 人脑神经元VS线性神经网络
    • 1.2.2 GemmaScope理解AI模型的内部原理
    • 1.2.3 大模型和人脑的区别
  • 1.3 学习机制
    • 1.3.1 图示+例子深入理解前向反向传播

第2章 大模型核心技术

  • 2.1 Transformer架构:大模型的“引擎”
    • 2.1.1 大模型认知能力生物学启发
    • 2.1.2 主流模型谱系:从GPT到LLaMA与MoE
  • 2.2 RLHF与思维链:让模型“更懂你”
    • 2.2.1 强化学习核心思想与PPO算法
    • 2.2.2 实战案例:用超级马里奥理解PPO
    • 2.2.3 从PPO到RLHF:奖励模型与对齐训练
  • 2.3 生成的奥秘:模型如何“思考”与“表达”
    • 2.3.1 概率与采样:模型输出的随机性与确定性
    • 2.3.2 解码策略:从Greedy Search到Beam Search
    • 2.3.3 AI大模型推理过程和优化技术
    • 2.3.4 思维链底层逻辑,换个Prompt性能飙升
  • 2.4 多模态:让模型“看懂世界”
    • 2.4.1 ViT与CLIP:模型理解图像的基石
    • 2.4.2 技术解析:从图生文到文生图
    • 2.4.3 开源实践:MiniGPT-4架构分析

第3章 大模型的“物质基础”:算力、数据与微调

  • 3.1 成本与性能:算力、参数与显存的权衡
    • 3.1.1 AI大模型参数量运算量显存如何分析计算
    • 3.1.2 大模型量化相关知识
  • 3.2 数据“燃料”:高质量数据的获取与处理
    • 3.2.1 大模型精调数据的质量要求和数据格式
    • 3.2.2 数据质量控制的关键步骤
  • 3.3 微调的艺术:让通用模型更“懂”你
    • 3.3.1 指令微调数据全面解析
    • 3.3.2 大模型训练优化参数设置4个技术
  • 3.4 Token:与大模型沟通的“货币”
    • 3.4.1 Tokenization原理与分词器
    • 3.4.2 token计算:原理与实用影响

第二篇:评测枢纽 —— 科学度量模型的能力边界

第4章 大模型评测体系与框架实战

  • 4.1 评测框架王者:OpenCompass设计哲学
    • 4.1.1 OpenCompass设计理念与动态注册机制
    • 4.1.2 核心流程:从配置文件到评测执行
    • 4.1.3 Hugging Face社区与模型加载
  • 4.2 实战:用OpenCompass发起你的第一个评测任务
    • 4.2.1 环境搭建与配置文件详解
    • 4.2.2 结果解读与分析
  • 4.3 多模态评测利器:VLMEvalKit源码解析

第5章 核心能力评测案例深度剖析

  • 5.1 语言与代码能力评测
    • 5.1.1 基础能力:文本相似度与匹配质量评估
    • 5.1.2 对话能力:多轮对话一致性与流畅度评测
    • 5.1.3 代码能力:HumanEval与代码生成评测实战
  • 5.2 多模态能力评测
    • 5.2.1 图像理解与描述(图生文)
    • 5.2.2 图像编辑与扩展能力(文生图/图生图)
    • 5.2.3 语音合成(TTS)与识别(ASR)能力评测
  • 5.3 Agent与工具使用能力评测
    • 5.3.1 RAG能力评测框架:Ragas实战
    • 5.3.2 AgentBench:更复杂的智能体能力评估
  • 5.4 模型输出的鲁棒性与一致性评测
    • 5.4.1 压力测试:并发用户数与吞吐量分析
    • 5.4.2 可靠性保障:如何确保模型输出格式的稳定性(如JSON)
    • 5.4.3 Correlations氛围测试:文本或图像的相似度热图
  • 5.5 手机AI功能端到端测评
    • 5.5.1 手机自动操控业务测评
    • 5.5.2 手机意图识别业务测评

第三篇:实践蓝图 —— 构建高价值AI智能应用

第6章 AI Agent核心技术与开发实战

  • 6.1 RAG入门:从零到一构建检索增强生成系统
    • 6.1.1 RAG基础架构六阶段详解
    • 6.1.2 Embedding模型选型与优化策略
  • 6.2 RAG进阶:提升检索与生成的质量
    • 6.2.1 结构化知识追踪:KnowTrace原理与应用
    • 6.2.2 高级检索策略
  • 6.3 Agent的记忆与思考:上下文管理
    • 6.3.1 上下文选择:工具、知识与记忆的调用
    • 6.3.2 上下文压缩:裁剪与摘要技术
    • 6.3.3 长短期记忆机制的最佳实践
    • 6.3.4 多智能体协同工作流
  • 6.4 高阶Agent开发策略与工程实践
  • 6.5 前沿探索:在移动设备上构建操作智能体

第7章 构建端到端智能测试系统

  • 7.1 AI赋能测试用例生成:从需求到Case
  • 7.2 AI赋能UI自动化测试
    • 7.2.1 Web自动化测试(Browser-Use)
    • 7.2.2 绕过反爬虫检测:stealth.js原理解析
    • 7.2.2 Android端到端自动化测试
  • 7.3 AI赋能测试策略:代码变更影响分析与精准测试
  • 7.4 AI赋能测试问答:构建轻量级ChatGPT聊天应用
### 人工智能大模型测试方法评估工具 #### 核心概念 在软件工程领域中,对AI大模型进行自动化测试的核心在于建立一套系统化、可量化的评估框架。该框架不仅涵盖了传统的功能验证,还涉及性能优化、可靠性保障等多个方面[^1]。 #### 评估指标 为了全面衡量AI大模型的表现,研究人员提出了多种评测维度,包括但不限于知识运用、数学推理能力和幻觉检测等。具体而言,TriviaQA 和 OpenBookQA 是用来检验模型的知识应用水平;而 GSM 8k 则专注于考察其数学逻辑推理能力;HaluEval 主要用于识别并减少模型产生的虚假信息[^2]。 #### 测试方法 对于复杂的大规模预训练语言模型 (LLMs),采用白盒测试策略能够有效提升对其内部机制理解程度下的调试效率。此方式允许开发者深入探索模型架构及其参数配置情况,并执行针对性更强的单元级或模块间交互层面的功能性审查[^3]。 此外,在未来发展中,“元评测”将成为一个重要趋势——即通过对现有各种评价标准本身的有效性和适用范围做进一步剖析来改进整个体系的设计思路。这其中包括了关于评测指标公平性的考量(如是否存在针对特定人群或者文化背景的内容偏向)以及它们应对潜在干扰源时表现出怎样的稳定特性等问题的研究[^4]。 #### 实际应用场景及代码示例 下面展示了一个简单的Python脚本片段,它演示了如何利用sklearn库中的train_test_split函数配合自定义评分函数完成初步的数据划分效果测量过程: ```python from sklearn.model_selection import train_test_split import numpy as np def custom_score(y_true, y_pred): """ 自定义得分计算 """ return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 X = [...] # 特征矩阵 Y = [...] # 目标向量 # 数据集分割 X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=0.2) # 假设已有一个预测器model_fit_and_predict() predictions = model_fit_and_predict(X_train,Y_train,X_val) print(f'Validation MAPE: {custom_score(Y_val,predictions)}%') ``` 以上代码仅为示意用途,请根据实际情况调整相应部分以适配具体的业务需求场景。 #### 推荐工具 - **TensorFlow Extended(TFX)** 提供端到端机器学习流水线支持。 - **MLflow** 可追踪实验版本管理同时具备部署服务功能。 - **Great Expectations** 集成数据质量检查至CI/CD流程之中。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值