在WSL上Ubuntu安装cuda和TensorRT

上篇文章的那台MAC,那效率,啧啧,练个几百条数据的模型,那速度,啧啧,等得肠子痒。。

wsl共享主机显卡驱动,所以不需要单独再安装显卡驱动 


看看显卡驱动:

nvidia-smi

 进入正题:

精简安装

这里有两种安装方式,先看最简单的,我个人比较喜欢。

安装软件包
sudo apt-get install  nvidia-cuda-toolkit nvidia-cudnn 

 检查安装

nvcc -V

出现下面内容表示安装成功

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Thu_Nov_18_09:45:30_PST_2021
Cuda compilation tools, release 11.5, V11.5.119
Build cuda_11.5.r11.5/compiler.30672275_0

因为安装这个主要是给python或者其他ai计算加速,所以这样已经足够

python库安装

包括cuda和cudnn以及tensorrt

安装cuda
pip install cuda-python

然后安装cudnn(可选),

cudnn现在是tensorrt的一个可选项

这里要注意 nvidia-cudnn-cu11

因为我这里是ubuntu2022,用上面的方式安装的cuda版本是11.x,如果你的显示是12,则需要把cu11改为cu12

# CUDA 11 版的cuDNN
pip install nvidia-cudnn-cu11
# CUDA 12 版的cuDNN
pip install nvidia-cudnn-cu12
安装tensorrt
pip install --upgrade tensorrt-cu11 tensorrt-lean-cu11 tensorrt-dispatch-cu11

验证tensorrt安装代码

python3
>>> import tensorrt
>>> print(tensorrt.__version__)
>>> assert tensorrt.Builder(tensorrt.Logger())

使用类似的过程来验证 lean 和 dispatch 模块是否正常工作 预期: 

python3
>>> import tensorrt_lean as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

python3
>>> import tensorrt_dispatch as trt
>>> print(trt.__version__)
>>> assert trt.Runtime(trt.Logger())

就是这样,精简全部方式全部安装完成

总结其实就是这两条命令:

sudo apt-get install  nvidia-cuda-toolkit nvidia-cudnn 


pip install --upgrade cuda-python tensorrt-cu11 tensorrt-lean-cu11 tensorrt-dispatch-cu11 

高级安装

高级安装是针对上面apt安装命令的

如果是做python开发,还得需要上面那条pip命令

我不喜欢麻烦的方式,作为一名合格的业余代码搬运工,省下时间用来养头发不香吗?

不过出于对各位扶到底的原则,我还是给出安装方式:

比上面的方式麻烦一点,所有的下载都需要与cuda下载的版本一致,否则会出现各种问题,这里演示今天(2024-09-10)官网展示的最新版本(12.6)版本:

各位大佬按照下面的命令一条一条执行即可:

顺序别错哈。。。。

# https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo cp cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.6.1/local_installers/cuda-repo-wsl-ubuntu-12-6-local_12.6.1-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-6-local_12.6.1-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-6-local/cuda-*-keyring.gpg /usr/share/keyrings/
# https://developer.nvidia.com/cudnn-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_local
wget https://developer.download.nvidia.com/compute/cudnn/9.4.0/local_installers/cudnn-local-repo-ubuntu2404-9.4.0_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2404-9.4.0_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2404-9.4.0/cudnn-*-keyring.gpg /usr/share/keyrings/
# https://developer.nvidia.com/tensorrt/download
wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.4.0/local_repo/nv-tensorrt-local-repo-ubuntu2404-10.4.0-cuda-12.6_1.0-1_amd64.deb
sudo dpkg -i nv-tensorrt-local-repo-ubuntu2404-10.4.0-cuda-12.6_1.0-1_amd64.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-6 cudnn tensorrt

编辑.bashrc文件

vim ~/.bashrc

export CUDA_HOME=/usr/local/cuda-12.6
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH

 刷新

source ~/.bashrc

如果tensorflow提示使只能CPU,什么AVX2 、FMA这类的,安装下面这个:

pip install tensorflow[and-cuda]

### 配置 CUDA TensorRTWSL 中 #### 安装必要的依赖项 为了在 Windows Subsystem for Linux (WSL) 中安装配置 CUDA 及其深度学习库 TensorRT,首先需要确保已安装一些基本工具依赖包。对于基于 Debian 的发行版如 Ubuntu,可以通过以下命令来完成这些操作: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install -y build-essential cmake git wget curl unzip pkg-config ``` 上述命令会更新软件源并升级现有包至最新版本,同时还会安装编译所需的工具链以及其它辅助开发工具[^2]。 #### 启用 WSL 2 并设置默认分发版 由于 NVIDIA 提供的官方支持仅限于 WSL 2 版本,因此需确认当前使用的确实是 WSL 2 而不是更早的 WSL 1。可以利用 PowerShell 来切换到 WSL 2: ```powershell wsl --set-default-version 2 ``` 接着指定某个特定的 Linux 发行作为默认启动的目标,比如 Ubuntu: ```powershell wsl --set-default <DistributionName> ``` 这里的 `<DistributionName>` 应替换为你实际安装的那个 Linux 发行的名字,通常就是 `Ubuntu` 或者带有版本号的形式如 `Ubuntu-20.04`。 #### 下载与安装 NVIDIA GPU Driver CUDA Toolkit 访问[NVIDIA 官方网站](https://developer.nvidia.com/cuda-downloads),按照提示下载适用于 WSL 的驱动程序及 CUDA 工具集。注意选择正确的平台选项——即 "Linux" -> "WSL"。完成后依照页面上的指导逐步执行安装过程即可。 #### 设置环境变量 成功安装之后,记得把 CUDA 的路径加入系统的 PATH 环境变量里去以便后续调用方便。编辑用户的 shell profile 文件(例如 `.bashrc`, `.zshrc`),添加如下几行内容: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 使更改生效可重新加载该文件或重启终端窗口: ```bash source ~/.bashrc # 如果使用的是 bash # 或者如果是 zsh 则运行下面这句 source ~/.zshrc # 如果使用的是 zsh ``` #### 安装 TensorRT TensorRT 是由 NVIDIA 开发的一个高性能推理优化器支持库集合,专门用于加速神经网络模型部署。同样地,在[NVIDIA Developer Zone](https://developer.nvidia.com/tensorrt) 上找到对应版本的 TensorRT,并遵循文档说明来进行本地化部署工作。一般情况下,建议先通过 pip 安装 Python API 接口部分;而对于 C++ 用户,则可能还需要额外处理 tarball 形式的二进制发布包。 #### 测试安装成果 最后一步是要验证整个流程是否顺利完成。可以从 GitHub 获取一个简单的测试项目,它能够帮助快速检验 CUDA TensorRT 是否正常运作。例如,尝试克隆 [NVIDIA/TensorRT-samples][tensorrt_samples_repo_link]仓库并依据其中 README.md 给出的操作指南构建样例工程。 [tensorrt_samples_repo_link]: https://github.com/NVIDIA/TensorRT/tree/master/samples
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值