题目1
给定一个链表,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
如果链表中存在环,则返回 true 。 否则,返回 false 。
进阶:
你能用 O(1)(即,常量)内存解决此问题吗?
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。
提示:
- 链表中节点的数目范围是 [0,
]
<= Node.val <=
- pos 为 -1 或者链表中的一个 有效索引 。
解题思路
方法一:哈希表
思路及算法
最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。
具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。
C++
class Solution {
public:
bool hasCycle(ListNode *head) {
unordered_set<ListNode*> seen;
while (head != nullptr) {
if (seen.count(head)) {
return true;
}
seen.insert(head);
head = head->next;
}
return false;
}
};
Python
class Solution:
def hasCycle(self, head: ListNode) -> bool:
seen = set()
while head:
if head in seen:
return True
seen.add(head)
head = head.next
return False
复杂度分析
- 时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
- 空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。
方法二:快慢指针
思路及算法
本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。
假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。
我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一慢。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。
细节
为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?
观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。
当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head。
C++
class Solution {
public:
bool hasCycle(ListNode* head) {
if (head == nullptr || head->next == nullptr) {
return false;
}
ListNode* slow = head;
ListNode* fast = head->next;
while (slow != fast) {
if (fast == nullptr || fast->next == nullptr) {
return false;
}
slow = slow->next;
fast = fast->next->next;
}
return true;
}
};
Python
class Solution:
def hasCycle(self, head: ListNode) -> bool:
if not head or not head.next:
return False
slow = head
fast = head.next
while slow != fast:
if not fast or not fast.next:
return False
slow = slow.next
fast = fast.next.next
return True
复杂度分析
- 时间复杂度:O(N),其中 N 是链表中的节点数。
当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。
当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。
- 空间复杂度:O(1)。我们只使用了两个指针的额外空间。
参考资料
题目2
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:tail connects to node index 1
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:tail connects to node index 0
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:no cycle
解释:链表中没有环。
进阶:
你是否可以不用额外空间解决此题?
解题思路
方法一:哈希表
思路与算法
一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。
C++
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
unordered_set<ListNode *> visited;
while (head != nullptr) {
if (visited.count(head)) {
return head;
}
visited.insert(head);
head = head->next;
}
return nullptr;
}
};
复杂度分析
- 时间复杂度:O(N),其中 N 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。
- 空间复杂度:O(N),其中 N 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。
方法二:快慢指针
思路与算法
我们使用两个指针, 与
。它们起始都位于链表的头部。随后,
指针每次向后移动一个位置,而
指针向后移动两个位置。如果链表中存在环,则
指针最终将再次与
指针在环中相遇。
如下图所示,设链表中环外部分的长度为 a。 指针进入环后,又走了 b 的距离与
相遇。此时,
指针已经走完了环的 n 圈,因此它走过的总距离为
。
根据题意,任意时刻, 指针走过的距离都为
指针的 2 倍。因此,我们有
有了 的等量关系,我们会发现:从相遇点到入环点的距离加上 n−1 圈的环长,恰好等于从链表头部到入环点的距离。
因此,当发现 与
相遇时,我们再额外使用一个指针
。起始,它指向链表头部;随后,它和
每次向后移动一个位置。最终,它们会在入环点相遇。
算法流程:
1、双指针第一次相遇: 设两指针 fast,slow 指向链表头部 head,fast 每轮走 2 步,slow 每轮走 1 步;
- 第一种结果: fast 指针走过链表末端,说明链表无环,直接返回 null;
TIPS: 若有环,两指针一定会相遇。因为每走 1 轮,fast 与 slow 的间距 +1,fast 终会追上 slow;
- 第二种结果: 当 fast == slow时, 两指针在环中 第一次相遇 。下面分析此时 fast 与 slow走过的 步数关系 :
设链表共有 a+b 个节点,其中 链表头部到链表入口 有 a 个节点(不计链表入口节点), 链表环 有 b 个节点(这里需要注意,a 和 b 是未知数,例如图解上链表 a=4, b=5);设两指针分别走了 f,s 步,则有:
- fast 走的步数是 slow 步数的 2 倍,即 f = 2s;(解析: fast 每轮走 2 步)
- fast 比 slow 多走了 n 个环的长度,即 f=s+nb;( 解析: 双指针都走过 a 步,然后在环内绕圈直到重合,重合时 fast 比 slow 多走环的长度整数倍 );
以上两式相减得:f = 2nb,s=nb,即 fast 和 slow 指针分别走了 2n,n 个环的周长(注意: n 是未知数,不同链表的情况不同)。
目前情况分析:
如果让指针从链表头部一直向前走并统计步数k,那么所有 走到链表入口节点时的步数 是:k=a+nb(先走 a 步到入口节点,之后每绕 1 圈环( bb 步)都会再次到入口节点)。
而目前,slow 指针走过的步数为 nb 步。因此,我们只要想办法让 slow 再走 a 步停下来,就可以到环的入口。
但是我们不知道 a 的值,该怎么办?依然是使用双指针法。我们构建一个指针,此指针需要有以下性质:此指针和 slow 一起向前走 a 步后,两者在入口节点重合。那么从哪里走到入口节点需要 a 步?答案是链表头部 head。
2、双指针第二次相遇:
slow 指针位置不变 ,将 fast 指针重新 指向链表头部节点 ;slow和fast同时每轮向前走 11 步;
TIPS:
此时 f = 0,s=nb ;
当 fast 指针走到 f = a 步时,slow 指针走到步 s=a+nb,此时两指针重合,并同时指向链表环入口 。
3、返回slow指针指向的节点。
C++
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *slow = head, *fast = head;
while (fast != nullptr) {
slow = slow->next;
if (fast->next == nullptr) {
return nullptr;
}
fast = fast->next->next;
if (fast == slow) {
ListNode *ptr = head;
while (ptr != slow) {
ptr = ptr->next;
slow = slow->next;
}
return ptr;
}
}
return nullptr;
}
};
Python
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def detectCycle(self, head):
fast, slow = head, head
while True:
if not (fast and fast.next): return
fast, slow = fast.next.next, slow.next
if fast == slow: break
fast = head
while fast != slow:
fast, slow = fast.next, slow.next
return fast
复杂度分析
- 时间复杂度:O(N),其中 N 为链表中节点的数目。在最初判断快慢指针是否相遇时,
指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O(N)+O(N)=O(N)。
- 空间复杂度:O(1)。我们只使用了
,
,
三个指针。