【LeetCode】141. 环形链表 & 142. 环形链表 II

这篇博客介绍了如何使用哈希表和快慢指针两种方法解决LeetCode上的141. 环形链表和142. 环形链表II问题,包括判断链表是否存在环以及找到环的入口节点。通过实例和复杂度分析,阐述了这两种算法的思路和实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目1

给定一个链表,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

如果链表中存在环,则返回 true 。 否则,返回 false 。

进阶:

你能用 O(1)(即,常量)内存解决此问题吗?

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

提示:

  • 链表中节点的数目范围是 [0, 10^{4}]
  • -10^{5} <= Node.val <= 10^{5}
  • pos 为 -1 或者链表中的一个 有效索引 。

解题思路

方法一:哈希表

思路及算法

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

C++

class Solution {
public:
    bool hasCycle(ListNode *head) {
        unordered_set<ListNode*> seen;
        while (head != nullptr) {
            if (seen.count(head)) {
                return true;
            }
            seen.insert(head);
            head = head->next;
        }
        return false;
    }
};

Python

class Solution:
    def hasCycle(self, head: ListNode) -> bool:
        seen = set()
        while head:
            if head in seen:
                return True
            seen.add(head)
            head = head.next
        return False

复杂度分析

  • 时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
  • 空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

方法二:快慢指针

思路及算法

本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。

假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一慢。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。

细节

为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?

观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。

当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head。

C++

class Solution {
public:
    bool hasCycle(ListNode* head) {
        if (head == nullptr || head->next == nullptr) {
            return false;
        }
        ListNode* slow = head;
        ListNode* fast = head->next;
        while (slow != fast) {
            if (fast == nullptr || fast->next == nullptr) {
                return false;
            }
            slow = slow->next;
            fast = fast->next->next;
        }
        return true;
    }
};

Python

class Solution:
    def hasCycle(self, head: ListNode) -> bool:
        if not head or not head.next:
            return False
        
        slow = head
        fast = head.next

        while slow != fast:
            if not fast or not fast.next:
                return False
            slow = slow.next
            fast = fast.next.next
        
        return True

复杂度分析

  • 时间复杂度:O(N),其中 N 是链表中的节点数。

当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。

当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。

  • 空间复杂度:O(1)。我们只使用了两个指针的额外空间。

参考资料

1、https://leetcode-cn.com/problems/linked-list-cycle/solution/huan-xing-lian-biao-by-leetcode-solution/

 

题目2

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。

说明:不允许修改给定的链表。

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:tail connects to node index 1
解释:链表中有一个环,其尾部连接到第二个节点。


示例 2:

输入:head = [1,2], pos = 0
输出:tail connects to node index 0
解释:链表中有一个环,其尾部连接到第一个节点。


示例 3:

输入:head = [1], pos = -1
输出:no cycle
解释:链表中没有环。

进阶:
你是否可以不用额外空间解决此题?

解题思路

方法一:哈希表

思路与算法

一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。

C++

class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        unordered_set<ListNode *> visited;
        while (head != nullptr) {
            if (visited.count(head)) {
                return head;
            }
            visited.insert(head);
            head = head->next;
        }
        return nullptr;
    }
};

复杂度分析

  • 时间复杂度:O(N),其中 N 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。
  • 空间复杂度:O(N),其中 N 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。

方法二:快慢指针

思路与算法

我们使用两个指针,\textit{fast} 与 \textit{slow}。它们起始都位于链表的头部。随后,\textit{slow} 指针每次向后移动一个位置,而 \textit{fast} 指针向后移动两个位置。如果链表中存在环,则 \textit{fast} 指针最终将再次与 \textit{slow} 指针在环中相遇。

如下图所示,设链表中环外部分的长度为 a。\textit{slow} 指针进入环后,又走了 b 的距离与 \textit{fast} 相遇。此时,\textit{fast} 指针已经走完了环的 n 圈,因此它走过的总距离为 a+n(b+c)+b=a+(n+1)b+nc

根据题意,任意时刻,\textit{fast} 指针走过的距离都为 \textit{slow} 指针的 2 倍。因此,我们有

a+(n+1)b+nc=2(a+b) \implies a=c+(n-1)(b+c)

有了 a=c+(n-1)(b+c) 的等量关系,我们会发现:从相遇点到入环点的距离加上 n−1 圈的环长,恰好等于从链表头部到入环点的距离。

因此,当发现 \textit{slow}\textit{fast} 相遇时,我们再额外使用一个指针 \textit{ptr}。起始,它指向链表头部;随后,它和 \textit{slow} 每次向后移动一个位置。最终,它们会在入环点相遇。

算法流程:

1、双指针第一次相遇: 设两指针 fast,slow 指向链表头部 head,fast 每轮走 2 步,slow 每轮走 1 步;

  • 第一种结果: fast 指针走过链表末端,说明链表无环,直接返回 null;

TIPS: 若有环,两指针一定会相遇。因为每走 1 轮,fast 与 slow 的间距 +1,fast 终会追上 slow;

  • 第二种结果: 当 fast == slow时, 两指针在环中 第一次相遇 。下面分析此时 fast 与 slow走过的 步数关系 :

设链表共有 a+b 个节点,其中 链表头部到链表入口 有 a 个节点(不计链表入口节点), 链表环 有 b 个节点(这里需要注意,a 和 b 是未知数,例如图解上链表 a=4, b=5);设两指针分别走了 f,s 步,则有:

  • fast 走的步数是 slow 步数的 2 倍,即 f = 2s;(解析: fast 每轮走 2 步)
  • fast 比 slow 多走了 n 个环的长度,即 f=s+nb;( 解析: 双指针都走过 a 步,然后在环内绕圈直到重合,重合时 fast 比 slow 多走环的长度整数倍 );

以上两式相减得:f = 2nb,s=nb,即 fast 和 slow 指针分别走了 2n,n 个环的周长(注意: n 是未知数,不同链表的情况不同)。

目前情况分析:

如果让指针从链表头部一直向前走并统计步数k,那么所有 走到链表入口节点时的步数 是:k=a+nb(先走 a 步到入口节点,之后每绕 1 圈环( bb 步)都会再次到入口节点)。
而目前,slow 指针走过的步数为 nb 步。因此,我们只要想办法让 slow 再走 a 步停下来,就可以到环的入口。
但是我们不知道 a 的值,该怎么办?依然是使用双指针法。我们构建一个指针,此指针需要有以下性质:此指针和 slow 一起向前走 a 步后,两者在入口节点重合。那么从哪里走到入口节点需要 a 步?答案是链表头部 head。
 

2、双指针第二次相遇:

slow 指针位置不变 ,将 fast 指针重新 指向链表头部节点 ;slow和fast同时每轮向前走 11 步;
TIPS:

此时 f = 0,s=nb ;
当 fast 指针走到 f = a 步时,slow 指针走到步 s=a+nb,此时两指针重合,并同时指向链表环入口 。

3、返回slow指针指向的节点。

C++

class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *slow = head, *fast = head;
        while (fast != nullptr) {
            slow = slow->next;
            if (fast->next == nullptr) {
                return nullptr;
            }
            fast = fast->next->next;
            if (fast == slow) {
                ListNode *ptr = head;
                while (ptr != slow) {
                    ptr = ptr->next;
                    slow = slow->next;
                }
                return ptr;
            }
        }
        return nullptr;
    }
};

Python

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution(object):
    def detectCycle(self, head):
        fast, slow = head, head
        while True:
            if not (fast and fast.next): return
            fast, slow = fast.next.next, slow.next
            if fast == slow: break
        fast = head
        while fast != slow:
            fast, slow = fast.next, slow.next
        return fast

复杂度分析

  • 时间复杂度:O(N),其中 N 为链表中节点的数目。在最初判断快慢指针是否相遇时,\textit{slow} 指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O(N)+O(N)=O(N)。
  • 空间复杂度:O(1)。我们只使用了 \textit{slow}, \textit{fast}, \textit{ptr} 三个指针。

参考资料

1、https://leetcode-cn.com/problems/linked-list-cycle-ii/solution/huan-xing-lian-biao-ii-by-leetcode-solution/

2、https://leetcode-cn.com/problems/linked-list-cycle-ii/solution/linked-list-cycle-ii-kuai-man-zhi-zhen-shuang-zhi-/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值