题目
统计所有小于非负整数 n 的质数的数量。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:0
提示:
解题思路
前言
统计 [2,n] 中质数的数量是一个很常见的题目,也有很多巧妙高效的做法,接下来的部分只会讲述一些常见的做法,更多的拓展内容读者可以自行搜索补充,也欢迎在评论区与大家分享交流。
方法一:枚举
很直观的思路是我们枚举每个数判断其是不是质数。
考虑质数的定义:在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。因此对于每个数 x,我们可以从小到大枚举 [2,x−1] 中的每个数 y,判断 y 是否为 x 的因数。但这样判断一个数是否为质数的时间复杂度最差情况下会到 O(n),无法通过所有测试数据。
考虑到如果 y 是 x 的因数,那么 也必然是 x 的因数,因此我们只要校验 y 或者
即可。而如果我们每次选择校验两者中的较小数,则不难发现较小数一定落在
的区间中,因此我们只需要枚举
中的所有数即可,这样单次检查的时间复杂度从 O(n) 降低至了
。
C++
class Solution {
public:
bool isPrime(int x) {
for (int i = 2; i * i <= x; ++i) {
if (x % i == 0) {
return false;
}
}
return true;
}
int countPrimes(int n) {
int ans = 0;
for (int i = 2; i < n; ++i) {
ans += isPrime(i);
}
return ans;
}
};
复杂度分析
- 时间复杂度:
。单个数检查的时间复杂度为
,一共要检查 O(n) 个数,因此总时间复杂度为
。
- 空间复杂度:O(1)。
方法二:埃氏筛
枚举没有考虑到数与数的关联性,因此难以再继续优化时间复杂度。接下来我们介绍一个常见的算法,该算法由希腊数学家厄拉多塞提出,称为厄拉多塞筛法,简称埃氏筛。
我们考虑这样一个事实:如果 x 是质数,那么大于 x 的 x 的倍数 2x,3x,… 一定不是质数,因此我们可以从这里入手。
我们设 isPrime[i] 表示数 i 是不是质数,如果是质数则为 1,否则为 0。从小到大遍历每个数,如果这个数为质数,则将其所有的倍数都标记为合数(除了该质数本身),即 0,这样在运行结束的时候我们即能知道质数的个数。
这种方法的正确性是比较显然的:这种方法显然不会将质数标记成合数;另一方面,当从小到大遍历到数 x 时,倘若它是合数,则它一定是某个小于 x 的质数 y 的整数倍,故根据此方法的步骤,我们在遍历到 y 时,就一定会在此时将 x 标记为 isPrime[x]=0。因此,这种方法也不会将合数标记为质数。
当然这里还可以继续优化,对于一个质数 x,如果按上文说的我们从 2x 开始标记其实是冗余的,应该直接从 开始标记,因为 2x,3x,… 这些数一定在 x 之前就被其他数的倍数标记过了,例如 2 的所有倍数,3 的所有倍数等。
C++
class Solution {
public:
int countPrimes(int n) {
vector<int> isPrime(n, 1);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (isPrime[i]) {
ans += 1;
if ((long long)i * i < n) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = 0;
}
}
}
}
return ans;
}
};
Python
class Solution:
def countPrimes(self, n: int) -> int:
# 最小的质数是 2
if n < 2:
return 0
isPrime = [1] * n
isPrime[0] = isPrime[1] = 0 # 0和1不是质数,先排除掉
# 埃式筛,把不大于根号 n 的所有质数的倍数剔除
for i in range(2, int(n ** 0.5) + 1):
if isPrime[i]:
isPrime[i * i:n:i] = [0] * ((n - 1 - i * i) // i + 1)
return sum(isPrime)
复杂度分析
- 时间复杂度:
。具体证明这里不再展开,读者可以自行思考或者上网搜索,本质上是要求解
的和,其中 p 为质数。当然我们可以了解这个算法一个比较松的上界 O(nlogn) 怎么计算,这个等价于考虑
的和,而
O,而 1 到 n 中所有数的倒数和趋近于 logn,因此
。
- 空间复杂度:O(n)。我们需要 O(n) 的空间记录每个数是否为质数。
方法三:线性筛
此方法不属于面试范围范畴,本节只做简单讲解。
埃氏筛其实还是存在冗余的标记操作,比如对于 15 这个数,它会同时被 3,5 两个数标记为合数,因此我们优化的目标是让每个合数只被标记一次,这样时间复杂度即能保证为 O(n),这就是我们接下来要介绍的线性筛。
相较于埃氏筛,我们多维护一个 primes 数组表示当前得到的质数集合。我们从小到大遍历,如果当前的数 x 是质数,就将其加入 primes 数组。
另一点与埃氏筛不同的是,「标记过程」不再仅当 x 为质数时才进行,而是对每个整数 x 都进行。对于整数 x,我们不再标记其所有的倍数 ,而是只标记质数集合中的数与 x 相乘的数,即
,且在发现
的时候结束当前标记。
核心点在于:如果 x 可以被 整除,那么对于合数
而言,它一定在后面遍历到
这个数的时候会被标记,其他同理,这保证了每个合数只会被其「最小的质因数」筛去,即每个合数被标记一次。
线性筛还有其他拓展用途,有能力的读者可以搜索关键字「积性函数」继续探究如何利用线性筛来求解积性函数相关的题目。
C++
class Solution {
public:
int countPrimes(int n) {
vector<int> primes;
vector<int> isPrime(n, 1);
for (int i = 2; i < n; ++i) {
if (isPrime[i]) {
primes.push_back(i);
}
for (int j = 0; j < primes.size() && i * primes[j] < n; ++j) {
isPrime[i * primes[j]] = 0;
if (i % primes[j] == 0) {
break;
}
}
}
return primes.size();
}
};
复杂度分析
-
时间复杂度:O(n)。
-
空间复杂度:O(n)。